o
    "ch#                     @  sr  d Z ddlmZ ddlZddlZddlZddlmZm	Z	 ddlm
Z
mZ ddlmZmZmZmZ ddlmZ dd	lmZ dd
lmZmZ ddlmZ ddlmZmZ ddlmZ ddlmZm Z  ddl!m"Z" ddl#m$Z$ ddl%m&Z& ddl'm(Z( ddl)m*Z* ej+rddl,m-Z. ddl/m0Z0 ddl1m2Z2 G dd de.ej3Z4neZ5		d2d3d"d#Z6d$dd%d&d4d,d-Z7d5d0d1Z8dS )6z0Private logic for creating pydantic dataclasses.    )annotationsN)partialwraps)AnyClassVar)
ArgsKwargsSchemaSerializerSchemaValidatorcore_schema)	TypeGuard   )PydanticUndefinedAnnotation)PluggableSchemaValidatorcreate_schema_validator)PydanticDeprecatedSince20   )_config_decorators)collect_dataclass_fields)GenerateSchemaInvalidSchemaError)get_standard_typevars_map)set_dataclass_mocks)
NsResolver)generate_pydantic_signature)LazyClassAttribute)DataclassInstance)
ConfigDict)	FieldInfoc                   @  sX   e Zd ZU dZded< ded< ded< ded	< d
ed< ded< ded< edddZdS )PydanticDataclassai  A protocol containing attributes only available once a class has been decorated as a Pydantic dataclass.

        Attributes:
            __pydantic_config__: Pydantic-specific configuration settings for the dataclass.
            __pydantic_complete__: Whether dataclass building is completed, or if there are still undefined fields.
            __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
            __pydantic_decorators__: Metadata containing the decorators defined on the dataclass.
            __pydantic_fields__: Metadata about the fields defined on the dataclass.
            __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the dataclass.
            __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the dataclass.
        zClassVar[ConfigDict]__pydantic_config__zClassVar[bool]__pydantic_complete__z ClassVar[core_schema.CoreSchema]__pydantic_core_schema__z$ClassVar[_decorators.DecoratorInfos]__pydantic_decorators__zClassVar[dict[str, FieldInfo]]__pydantic_fields__zClassVar[SchemaSerializer]__pydantic_serializer__z4ClassVar[SchemaValidator | PluggableSchemaValidator]__pydantic_validator__returnboolc                 C  s   d S N )clsr*   r*   ]/home/air/goalskill/back/venv/lib/python3.10/site-packages/pydantic/_internal/_dataclasses.py__pydantic_fields_complete__:   s   z.PydanticDataclass.__pydantic_fields_complete__N)r'   r(   )__name__
__module____qualname____doc____annotations__classmethodr-   r*   r*   r*   r,   r   %   s   
 r   r+   type[StandardDataclass]ns_resolverNsResolver | Noneconfig_wrapper_config.ConfigWrapper | Noner'   Nonec                 C  s"   t | }t| |||d}|| _dS )zCollect and set `cls.__pydantic_fields__`.

    Args:
        cls: The class.
        ns_resolver: Namespace resolver to use when getting dataclass annotations.
        config_wrapper: The config wrapper instance, defaults to `None`.
    )r5   typevars_mapr7   N)r   r   r$   )r+   r5   r7   r:   fieldsr*   r*   r,   set_dataclass_fieldsC   s
   
r<   TF)raise_errorsr5   _force_build	type[Any]_config.ConfigWrapperr=   r(   r>   c             
     s  | j }ddd	}| j d
|_|| _ |j| _t| ||d |s(|jr(t|  dS t| dr3t	dt
 t| }t|||d}tdtt|| j|j|jdd| _z|| }	W n  tyv }
 z|ra t| d|
j d W Y d}
~
dS d}
~
ww |j| jd}z||	}	W n ty   t|  Y dS w td| } |	| _t|	| | j| jd||j  | _! t"|	|| _#|j$rt%| j&d fdd}|'d| | _&d| _(dS ) a  Finish building a pydantic dataclass.

    This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`.

    This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`.

    Args:
        cls: The class.
        config_wrapper: The config wrapper instance.
        raise_errors: Whether to raise errors, defaults to `True`.
        ns_resolver: The namespace resolver instance to use when collecting dataclass fields
            and during schema building.
        _force_build: Whether to force building the dataclass, no matter if
            [`defer_build`][pydantic.config.ConfigDict.defer_build] is set.

    Returns:
        `True` if building a pydantic dataclass is successfully completed, `False` otherwise.

    Raises:
        PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations.
    __dataclass_self__r   argsr   kwargsr'   r9   c                 _  s"   d}| }|j jt|||d d S )NT)self_instance)r&   validate_pythonr   )rA   rB   rC   __tracebackhide__sr*   r*   r,   __init__x   s   z$complete_dataclass.<locals>.__init__z	.__init__)r7   F__post_init_post_parse__zVSupport for `__post_init_post_parse__` has been dropped, the method will not be called)r5   r:   __signature__T)initr;   validate_by_nameextrais_dataclass`N)titleztype[PydanticDataclass]	dataclassinstancefieldstrvaluec                  s     | || d S r)   )validate_assignment)rR   rS   rU   	validatorr*   r,   validated_setattr   s   z-complete_dataclass.<locals>.validated_setattr)rA   r   rB   r   rC   r   r'   r9   )rR   r   rS   rT   rU   rT   r'   r9   ))rH   r0   config_dictr    r<   defer_buildr   hasattrwarningswarnDeprecationWarningr   r   r   r   r   r$   rL   rM   rJ   generate_schemar   namecore_configr.   clean_schemar   typingcastr"   r   r/   plugin_settingsr&   r   r%   rV   r   __setattr____get__r!   )r+   r7   r=   r5   r>   original_initrH   r:   
gen_schemaschemaerb   rY   r*   rW   r,   complete_dataclassW   st   


	
rm   _cls"TypeGuard[type[StandardDataclass]]c                 C  s2   t | ot| d ot| jtt| di S )aB  Returns True if a class is a stdlib dataclass and *not* a pydantic dataclass.

    We check that
    - `_cls` is a dataclass
    - `_cls` does not inherit from a processed pydantic dataclass (and thus have a `__pydantic_validator__`)
    - `_cls` does not have any annotations that are not dataclass fields
    e.g.
    ```python
    import dataclasses

    import pydantic.dataclasses

    @dataclasses.dataclass
    class A:
        x: int

    @pydantic.dataclasses.dataclass
    class B(A):
        y: int
    ```
    In this case, when we first check `B`, we make an extra check and look at the annotations ('y'),
    which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x')

    Args:
        cls: The class.

    Returns:
        `True` if the class is a stdlib dataclass, `False` otherwise.
    r&   r2   )dataclassesrN   r\   set__dataclass_fields__
issupersetgetattr)rn   r*   r*   r,   is_builtin_dataclass   s
   

ru   )NN)r+   r4   r5   r6   r7   r8   r'   r9   )r+   r?   r7   r@   r=   r(   r5   r6   r>   r(   r'   r(   )rn   r?   r'   ro   )9r1   
__future__r   _annotationsrp   rd   r]   	functoolsr   r   r   r   pydantic_corer   r   r	   r
   typing_extensionsr   errorsr   plugin._schema_validatorr   r   r    r   r   _fieldsr   _generate_schemar   r   	_genericsr   _mock_val_serr   _namespace_utilsr   
_signaturer   _utilsr   TYPE_CHECKING	_typeshedr   StandardDataclassconfigr   r;   r   Protocolr   r_   r<   rm   ru   r*   r*   r*   r,   <module>   sD    u