o
    ɭRh;                     @   s   d dl mZmZmZ d dlmZ d dlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlZeeZerId dlmZ G dd ded	 ZdS )
    )TYPE_CHECKINGOptionalUnion)CollectionCommon)URICollectionMetadata	EmbeddingPyEmbeddingIncludeMetadataDocumentImageWhereIDs	GetResultQueryResultID	OneOrManyWhereDocument)UpdateCollectionConfigurationN)	ServerAPIc                   @   s  e Zd ZdefddZ					d-dee deeee	 ee
 f  deee  deee  d	eee  d
eee  ddfddZdddddddgfdeee  dee dee dee dee dedefddZd.dedefddZddddddddg df	deeee	 ee
 f  deee  deee  deee  deee  dedee dee dedefddZ			d/dee d ee d!ee ddfd"d#Zd$edd fd%d&Z					d-dee deeee	 ee
 f  deee  deee  d	eee  d
eee  ddfd'd(Z					d-dee deeee	 ee
 f  deee  deee  d	eee  d
eee  ddfd)d*Z			d/dee dee dee ddfd+d,Z dS )0
Collectionreturnc                 C   s   | j j| j| j| jdS )zThe total number of embeddings added to the database

        Returns:
            int: The total number of embeddings added to the database

        )collection_idtenantdatabase)_client_countidr   r   )self r    `/home/air/sanwanet/backup_V2/venv/lib/python3.10/site-packages/chromadb/api/models/Collection.pycount    s
   zCollection.countNids
embeddings	metadatas	documentsimagesurisc              
   C   P   | j ||||||d}| jj| j|d |d |d |d |d | j| jd dS )	a]  Add embeddings to the data store.
        Args:
            ids: The ids of the embeddings you wish to add
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
            uris: The uris of the images to associate with the embeddings. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either embeddings or documents
            ValueError: If the length of ids, embeddings, metadatas, or documents don't match
            ValueError: If you don't provide an embedding function and don't provide embeddings
            ValueError: If you provide both embeddings and documents
            ValueError: If you provide an id that already exists

        r#   r$   r%   r&   r'   r(   r#   r$   r%   r&   r(   r   r#   r$   r%   r&   r(   r   r   N)!_validate_and_prepare_add_requestr   _addr   r   r   )r   r#   r$   r%   r&   r'   r(   add_requestr    r    r!   add-   s$   #	
zCollection.addwherelimitoffsetwhere_documentincludec           	      C   sX   | j ||||d}| jj| j|d |d |d |d ||| j| jd	}| j||d dS )a  Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
        all embeddings up to limit starting at offset.

        Args:
            ids: The ids of the embeddings to get. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            limit: The number of documents to return. Optional.
            offset: The offset to start returning results from. Useful for paging results with limit. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.

        Returns:
            GetResult: A GetResult object containing the results.

        )r#   r0   r3   r4   r#   r0   r3   r4   )	r   r#   r0   r3   r4   r1   r2   r   r   responser4   )!_validate_and_prepare_get_requestr   _getr   r   r   _transform_get_response)	r   r#   r0   r1   r2   r3   r4   get_requestget_resultsr    r    r!   getd   s(   zCollection.get
   c                 C   s    |  | jj| j|| j| jdS )zGet the first few results in the database up to limit

        Args:
            limit: The number of results to return.

        Returns:
            GetResult: A GetResult object containing the results.
        )r   nr   r   )_transform_peek_responser   _peekr   r   r   )r   r1   r    r    r!   peek   s   	zCollection.peek)r%   r&   	distancesquery_embeddingsquery_textsquery_images
query_uris	n_resultsc
                 C   sj   | j |||||||||	d	}
| jj| j|
d |
d |
d |
d |
d |
d | j| jd	}| j||
d d	S )
a  Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.

        Args:
            query_embeddings: The embeddings to get the closes neighbors of. Optional.
            query_texts: The document texts to get the closes neighbors of. Optional.
            query_images: The images to get the closes neighbors of. Optional.
            query_uris: The URIs to be used with data loader. Optional.
            ids: A subset of ids to search within. Optional.
            n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.

        Returns:
            QueryResult: A QueryResult object containing the results.

        Raises:
            ValueError: If you don't provide either query_embeddings, query_texts, or query_images
            ValueError: If you provide both query_embeddings and query_texts
            ValueError: If you provide both query_embeddings and query_images
            ValueError: If you provide both query_texts and query_images

        )	rC   rD   rE   rF   r#   rG   r0   r3   r4   r#   r$   rG   r0   r3   r4   )	r   r#   rC   rG   r0   r3   r4   r   r   r5   )#_validate_and_prepare_query_requestr   _queryr   r   r   _transform_query_response)r   rC   rD   rE   rF   r#   rG   r0   r3   r4   query_requestquery_resultsr    r    r!   query   s2   -zCollection.querynamemetadataconfigurationc                 C   s:   |  | | jj| j|||| j| jd | ||| dS )zModify the collection name or metadata

        Args:
            name: The updated name for the collection. Optional.
            metadata: The updated metadata for the collection. Optional.

        Returns:
            None
        )r   new_namenew_metadatanew_configurationr   r   N)_validate_modify_requestr   _modifyr   r   r   "_update_model_after_modify_success)r   rN   rO   rP   r    r    r!   modify   s   
	zCollection.modifyrQ   c                 C   s0   | j j| j|| j| jd}t| j || j| jdS )a  Fork the current collection under a new name. The returning collection should contain identical data to the current collection.
        This is an experimental API that only works for Hosted Chroma for now.

        Args:
            new_name: The name of the new collection.

        Returns:
            Collection: A new collection with the specified name and containing identical data to the current collection.
        )r   rQ   r   r   )clientmodelembedding_functiondata_loader)r   _forkr   r   r   r   _embedding_function_data_loader)r   rQ   rY   r    r    r!   fork  s   zCollection.forkc              
   C   r)   )	a  Update the embeddings, metadatas or documents for provided ids.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
        Returns:
            None
        r*   r#   r$   r%   r&   r(   r+   N)$_validate_and_prepare_update_requestr   _updater   r   r   )r   r#   r$   r%   r&   r'   r(   update_requestr    r    r!   update'  $   	
zCollection.updatec              
   C   r)   )	aO  Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.

        Returns:
            None
        r*   r#   r$   r%   r&   r(   r+   N)$_validate_and_prepare_upsert_requestr   _upsertr   r   r   )r   r#   r$   r%   r&   r'   r(   upsert_requestr    r    r!   upsertT  rd   zCollection.upsertc                 C   s<   |  |||}| jj| j|d |d |d | j| jd dS )a0  Delete the embeddings based on ids and/or a where filter

        Args:
            ids: The ids of the embeddings to delete
            where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}]}}`. Optional.
            where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{"$contains": "hello"}`. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either ids, where, or where_document
        r#   r0   r3   )r   r#   r0   r3   r   r   N)$_validate_and_prepare_delete_requestr   _deleter   r   r   )r   r#   r0   r3   delete_requestr    r    r!   delete  s   
zCollection.delete)NNNNN)r=   )NNN)!__name__
__module____qualname__intr"   r   r   r   r   r   r	   r   r   r   r   r/   r   r   r
   r   r<   rA   r   rM   strr   r   rW   r_   rc   rh   r   rl   r    r    r    r!   r      sN   
	




9

.

	



K
 
"
	




5
	




/r   r   )typingr   r   r   $chromadb.api.models.CollectionCommonr   chromadb.api.typesr   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   %chromadb.api.collection_configurationr   logging	getLoggerrm   loggerchromadb.apir   r   r    r    r    r!   <module>   s    D
