o
    Rh8                     @   s   d dl Z d dlZddlmZmZmZmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZmZmZ ddlmZmZmZmZ dd	lmZ dd
lmZ ddlmZ dgZG dd deeZdS )    N   )BaseEstimatorRegressorMixin_fit_contextclone)NotFittedError)LinearRegression)FunctionTransformer)Bunch_safe_indexingcheck_array)MetadataRouterMethodMapping_routing_enabledprocess_routing)
HasMethods)get_tags)check_is_fittedTransformedTargetRegressorc                       s   e Zd ZU dZeddgdgeddgedgedgdgdZeed< 	ddddd	d
ddZ	dd Z
edddd Zdd Z fddZedd Zdd ZdddZ  ZS )r   a  Meta-estimator to regress on a transformed target.

    Useful for applying a non-linear transformation to the target `y` in
    regression problems. This transformation can be given as a Transformer
    such as the :class:`~sklearn.preprocessing.QuantileTransformer` or as a
    function and its inverse such as `np.log` and `np.exp`.

    The computation during :meth:`fit` is::

        regressor.fit(X, func(y))

    or::

        regressor.fit(X, transformer.transform(y))

    The computation during :meth:`predict` is::

        inverse_func(regressor.predict(X))

    or::

        transformer.inverse_transform(regressor.predict(X))

    Read more in the :ref:`User Guide <transformed_target_regressor>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    regressor : object, default=None
        Regressor object such as derived from
        :class:`~sklearn.base.RegressorMixin`. This regressor will
        automatically be cloned each time prior to fitting. If `regressor is
        None`, :class:`~sklearn.linear_model.LinearRegression` is created and used.

    transformer : object, default=None
        Estimator object such as derived from
        :class:`~sklearn.base.TransformerMixin`. Cannot be set at the same time
        as `func` and `inverse_func`. If `transformer is None` as well as
        `func` and `inverse_func`, the transformer will be an identity
        transformer. Note that the transformer will be cloned during fitting.
        Also, the transformer is restricting `y` to be a numpy array.

    func : function, default=None
        Function to apply to `y` before passing to :meth:`fit`. Cannot be set
        at the same time as `transformer`. If `func is None`, the function used will be
        the identity function. If `func` is set, `inverse_func` also needs to be
        provided. The function needs to return a 2-dimensional array.

    inverse_func : function, default=None
        Function to apply to the prediction of the regressor. Cannot be set at
        the same time as `transformer`. The inverse function is used to return
        predictions to the same space of the original training labels. If
        `inverse_func` is set, `func` also needs to be provided. The inverse
        function needs to return a 2-dimensional array.

    check_inverse : bool, default=True
        Whether to check that `transform` followed by `inverse_transform`
        or `func` followed by `inverse_func` leads to the original targets.

    Attributes
    ----------
    regressor_ : object
        Fitted regressor.

    transformer_ : object
        Transformer used in :meth:`fit` and :meth:`predict`.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying regressor exposes such an attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.preprocessing.FunctionTransformer : Construct a transformer from an
        arbitrary callable.

    Notes
    -----
    Internally, the target `y` is always converted into a 2-dimensional array
    to be used by scikit-learn transformers. At the time of prediction, the
    output will be reshaped to a have the same number of dimensions as `y`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.linear_model import LinearRegression
    >>> from sklearn.compose import TransformedTargetRegressor
    >>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
    ...                                 func=np.log, inverse_func=np.exp)
    >>> X = np.arange(4).reshape(-1, 1)
    >>> y = np.exp(2 * X).ravel()
    >>> tt.fit(X, y)
    TransformedTargetRegressor(...)
    >>> tt.score(X, y)
    1.0
    >>> tt.regressor_.coef_
    array([2.])

    For a more detailed example use case refer to
    :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`.
    fitpredictN	transformboolean	regressortransformerfuncinverse_funccheck_inverse_parameter_constraintsT)r   r   r   r   c                C   s"   || _ || _|| _|| _|| _d S Nr   )selfr   r   r   r   r    r"   Y/home/air/sanwanet/backup_V2/venv/lib/python3.10/site-packages/sklearn/compose/_target.py__init__   s
   	
z#TransformedTargetRegressor.__init__c                 C   s.  | j dur| jdus| jdurtd| j durt| j | _n@| jdur)| jdu s3| jdu rL| jdurL| jdu r:dnd\}}td| d| d| dt| j| jd	| jd
| _| jjdd | j	| | jrt
ddtd|jd d }t||}| j|}t|| j|stdt dS dS dS )zCheck transformer and fit transformer.

        Create the default transformer, fit it and make additional inverse
        check on a subset (optional).

        NzE'transformer' and functions 'func'/'inverse_func' cannot both be set.)r   r   )r   r   zWhen 'z' is provided, 'z' must also be provided. If zU is supposed to be the default, you need to explicitly pass it the identity function.T)r   r   validater   default)r      r   
   zThe provided functions or transformer are not strictly inverse of each other. If you are sure you want to proceed regardless, set 'check_inverse=False')r   r   r   
ValueErrorr   transformer_r	   r   
set_outputr   slicemaxshaper   r   npallcloseinverse_transformwarningswarnUserWarning)r!   ylacking_paramexisting_paramidx_selectedy_sely_sel_tr"   r"   r#   _fit_transformer   sJ   


	
z+TransformedTargetRegressor._fit_transformerF)prefer_skip_nested_validationc              	   K   s   |du rt d| jj dt|ddddddd}|j| _|jd	kr)|d
d	}n|}| | | j	|}|jdkrH|j
d	 d	krH|jd	d}| jdd| _t r\t| dfi |}ntt|dd}| jj||fi |jj t| jdr|| jj| _| S )a  Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target values.

        **fit_params : dict
            - If `enable_metadata_routing=False` (default): Parameters directly passed
              to the `fit` method of the underlying regressor.

            - If `enable_metadata_routing=True`: Parameters safely routed to the `fit`
              method of the underlying regressor.

            .. versionchanged:: 1.6
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Fitted estimator.
        NzThis z= estimator requires y to be passed, but the target y is None.r5   FTnumeric)
input_nameaccept_sparseensure_all_finite	ensure_2ddtypeallow_ndr'   r   axis)	get_cloner   )r   r   feature_names_in_)r)   	__class____name__r   ndim_training_dimreshaper;   r*   r   r.   squeeze_get_regressor
regressor_r   r   r
   r   r   hasattrrI   )r!   Xr5   
fit_paramsy_2dy_transrouted_paramsr"   r"   r#   r      s:    


zTransformedTargetRegressor.fitc                 K   s   t |  t rt| dfi |}ntt|dd}| jj|fi |jj}|jdkr5| j	|
dd}n| j	|}| jdkrR|jdkrR|jd dkrR|jdd}|S )a  Predict using the base regressor, applying inverse.

        The regressor is used to predict and the `inverse_func` or
        `inverse_transform` is applied before returning the prediction.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples.

        **predict_params : dict of str -> object
            - If `enable_metadata_routing=False` (default): Parameters directly passed
              to the `predict` method of the underlying regressor.

            - If `enable_metadata_routing=True`: Parameters safely routed to the
              `predict` method of the underlying regressor.

            .. versionchanged:: 1.6
                See :ref:`Metadata Routing User Guide <metadata_routing>`
                for more details.

        Returns
        -------
        y_hat : ndarray of shape (n_samples,)
            Predicted values.
        r   )r   rH   r'   rD   r   rE   )r   r   r   r
   rQ   r   r   rL   r*   r1   rN   rM   r.   rO   )r!   rS   predict_paramsrW   pred
pred_transr"   r"   r#   r   ,  s   


z"TransformedTargetRegressor.predictc                    s>   |   }t  }d|j_t|jj|j_t|jj	|j_	|S )NT)
rP   super__sklearn_tags__regressor_tags
poor_scorer   
input_tagssparsetarget_tagsmulti_output)r!   r   tagsrJ   r"   r#   r\   [  s   
z+TransformedTargetRegressor.__sklearn_tags__c              
   C   s@   z	t |  W | jjS  ty } z
td| jj|d}~ww )z+Number of features seen during :term:`fit`.z*{} object has no n_features_in_ attribute.N)r   r   AttributeErrorformatrJ   rK   rQ   n_features_in_)r!   nfer"   r"   r#   rg   c  s   
z)TransformedTargetRegressor.n_features_in_c                 C   s6   t | jjdj|  t jdddjdddd}|S )aj  Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.6

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        )ownerr   )callercalleer   )r   method_mapping)r   rJ   rK   addrP   r   )r!   routerr"   r"   r#   get_metadata_routings  s   z/TransformedTargetRegressor.get_metadata_routingc                 C   s$   | j d u rt S |rt| j S | j S r    )r   r   r   )r!   rG   r"   r"   r#   rP     s   
z)TransformedTargetRegressor._get_regressorr    )F)rK   
__module____qualname____doc__r   callabler   dict__annotations__r$   r;   r   r   r   r\   propertyrg   ro   rP   __classcell__r"   r"   rd   r#   r      s4   
 p

;
L/
)r2   numpyr/   baser   r   r   r   
exceptionsr   linear_modelr   preprocessingr	   utilsr
   r   r   utils._metadata_requestsr   r   r   r   utils._param_validationr   utils._tagsr   utils.validationr   __all__r   r"   r"   r"   r#   <module>   s   