o
    ?Hh5                     @   s   d Z ddlZddlmZmZmZmZ ddlmZm	Z	 ddl
mZ g dZ				dd
dZdddZdddZdddZdddZdddZdS )z!Cholesky decomposition functions.    N)asarray_chkfiniteasarray
atleast_2d
empty_like   )LinAlgError_datacopied)get_lapack_funcs)cholesky
cho_factor	cho_solvecholesky_bandedcho_solve_bandedFTc           
      C   s   |rt | nt| }t|}|jdkrtd|j d|jd |jd kr/td|j d|jdkrGttj	d|j
dj
}t||d|fS |pMt|| }td	|f\}|||||d
\}}	|	dkritd|	 |	dk rvtd|	  d||fS )z,Common code for cholesky() and cho_factor().   z*Input array needs to be 2D but received a zd-array.r   r   z8Input array is expected to be square but has the shape: .dtype)potrf)loweroverwrite_acleanz9%d-th leading minor of the array is not positive definitez$LAPACK reported an illegal value in z -th argumenton entry to "POTRF".)r   r   r   ndim
ValueErrorshapesizer
   npeyer   r   r   r	   r   )
ar   r   r   check_finitea1dtr   cinfo r#   ]/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/scipy/linalg/_decomp_cholesky.py	_cholesky   s*   


r%   c                 C   s   t | ||d|d\}}|S )aU  
    Compute the Cholesky decomposition of a matrix.

    Returns the Cholesky decomposition, :math:`A = L L^*` or
    :math:`A = U^* U` of a Hermitian positive-definite matrix A.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to be decomposed
    lower : bool, optional
        Whether to compute the upper- or lower-triangular Cholesky
        factorization. During decomposition, only the selected half of the
        matrix is referenced. Default is upper-triangular.
    overwrite_a : bool, optional
        Whether to overwrite data in `a` (may improve performance).
    check_finite : bool, optional
        Whether to check that the entire input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (M, M) ndarray
        Upper- or lower-triangular Cholesky factor of `a`.

    Raises
    ------
    LinAlgError : if decomposition fails.

    Notes
    -----
    During the finiteness check (if selected), the entire matrix `a` is
    checked. During decomposition, `a` is assumed to be symmetric or Hermitian
    (as applicable), and only the half selected by option `lower` is referenced.
    Consequently, if `a` is asymmetric/non-Hermitian, `cholesky` may still
    succeed if the symmetric/Hermitian matrix represented by the selected half
    is positive definite, yet it may fail if an element in the other half is
    non-finite.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky
    >>> a = np.array([[1,-2j],[2j,5]])
    >>> L = cholesky(a, lower=True)
    >>> L
    array([[ 1.+0.j,  0.+0.j],
           [ 0.+2.j,  1.+0.j]])
    >>> L @ L.T.conj()
    array([[ 1.+0.j,  0.-2.j],
           [ 0.+2.j,  5.+0.j]])

    Tr   r   r   r   r%   r   r   r   r   r!   r#   r#   r$   r
   .   s   
7
r
   c                 C   s   t | ||d|d\}}||fS )a
  
    Compute the Cholesky decomposition of a matrix, to use in cho_solve

    Returns a matrix containing the Cholesky decomposition,
    ``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`.
    The return value can be directly used as the first parameter to cho_solve.

    .. warning::
        The returned matrix also contains random data in the entries not
        used by the Cholesky decomposition. If you need to zero these
        entries, use the function `cholesky` instead.

    Parameters
    ----------
    a : (M, M) array_like
        Matrix to be decomposed
    lower : bool, optional
        Whether to compute the upper or lower triangular Cholesky factorization.
        During decomposition, only the selected half of the matrix is referenced.
        (Default: upper-triangular)
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance)
    check_finite : bool, optional
        Whether to check that the entire input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (M, M) ndarray
        Matrix whose upper or lower triangle contains the Cholesky factor
        of `a`. Other parts of the matrix contain random data.
    lower : bool
        Flag indicating whether the factor is in the lower or upper triangle

    Raises
    ------
    LinAlgError
        Raised if decomposition fails.

    See Also
    --------
    cho_solve : Solve a linear set equations using the Cholesky factorization
                of a matrix.

    Notes
    -----
    During the finiteness check (if selected), the entire matrix `a` is
    checked. During decomposition, `a` is assumed to be symmetric or Hermitian
    (as applicable), and only the half selected by option `lower` is referenced.
    Consequently, if `a` is asymmetric/non-Hermitian, `cholesky` may still
    succeed if the symmetric/Hermitian matrix represented by the selected half
    is positive definite, yet it may fail if an element in the other half is
    non-finite.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cho_factor
    >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
    >>> c, low = cho_factor(A)
    >>> c
    array([[3.        , 1.        , 0.33333333, 1.66666667],
           [3.        , 2.44948974, 1.90515869, -0.27216553],
           [1.        , 5.        , 2.29330749, 0.8559528 ],
           [5.        , 1.        , 2.        , 1.55418563]])
    >>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4)))
    True

    Fr&   r'   r(   r#   r#   r$   r   j   s   
G
r   c                 C   s  | \}}|rt |}t |}nt|}t|}|jdks&|jd |jd kr*td|jd |jd krAtd|j d|j d|jdkr`ttjd|j	dd	ftj
d|j	dj	}t||dS |pft||}td
||f\}|||||d\}	}
|
dkrtd|
  |	S )aM  Solve the linear equations A x = b, given the Cholesky factorization of A.

    Parameters
    ----------
    (c, lower) : tuple, (array, bool)
        Cholesky factorization of a, as given by cho_factor
    b : array
        Right-hand side
    overwrite_b : bool, optional
        Whether to overwrite data in b (may improve performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        The solution to the system A x = b

    See Also
    --------
    cho_factor : Cholesky factorization of a matrix

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cho_factor, cho_solve
    >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
    >>> c, low = cho_factor(A)
    >>> x = cho_solve((c, low), [1, 1, 1, 1])
    >>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
    True

    r   r   r   z$The factored matrix c is not square.zincompatible dimensions (z and )r   T)potrsr   overwrite_bz0illegal value in %dth argument of internal potrs)r   r   r   r   r   r   r   r   r   r   onesr   r   r	   )c_and_lowerbr,   r   r!   r   b1r    r*   xr"   r#   r#   r$   r      s2   $

r   c                 C   s   |rt | } nt| } | jdkr'ttjddgddgg| jdj}t| |dS td| f\}|| ||d\}}|dkrAt	d| |dk rLt
d|  |S )ai  
    Cholesky decompose a banded Hermitian positive-definite matrix

    The matrix a is stored in ab either in lower-diagonal or upper-
    diagonal ordered form::

        ab[u + i - j, j] == a[i,j]        (if upper form; i <= j)
        ab[    i - j, j] == a[i,j]        (if lower form; i >= j)

    Example of ab (shape of a is (6,6), u=2)::

        upper form:
        *   *   a02 a13 a24 a35
        *   a01 a12 a23 a34 a45
        a00 a11 a22 a33 a44 a55

        lower form:
        a00 a11 a22 a33 a44 a55
        a10 a21 a32 a43 a54 *
        a20 a31 a42 a53 *   *

    Parameters
    ----------
    ab : (u + 1, M) array_like
        Banded matrix
    overwrite_ab : bool, optional
        Discard data in ab (may enhance performance)
    lower : bool, optional
        Is the matrix in the lower form. (Default is upper form)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    c : (u + 1, M) ndarray
        Cholesky factorization of a, in the same banded format as ab

    See Also
    --------
    cho_solve_banded :
        Solve a linear set equations, given the Cholesky factorization
        of a banded Hermitian.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky_banded
    >>> from numpy import allclose, zeros, diag
    >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
    >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
    >>> A = A + A.conj().T + np.diag(Ab[2, :])
    >>> c = cholesky_banded(Ab)
    >>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
    >>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
    True

    r   r   r   )pbtrf)r   overwrite_abz)%d-th leading minor not positive definitez1illegal value in %d-th argument of internal pbtrf)r   r   r   r   r   arrayr   r   r	   r   r   )abr3   r   r   r    r2   r!   r"   r#   r#   r$   r      s   <

"r   c                 C   s   | \}}|rt |}t |}nt|}t|}|jd |jd kr%td|jdkrNttjddgddgg|jd}t	|dftj
d|jdj}t||dS td||f\}|||||d	\}	}
|
dkrjtd
|
 |
dk rutd|
  |	S )a  
    Solve the linear equations ``A x = b``, given the Cholesky factorization of
    the banded Hermitian ``A``.

    Parameters
    ----------
    (cb, lower) : tuple, (ndarray, bool)
        `cb` is the Cholesky factorization of A, as given by cholesky_banded.
        `lower` must be the same value that was given to cholesky_banded.
    b : array_like
        Right-hand side
    overwrite_b : bool, optional
        If True, the function will overwrite the values in `b`.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        The solution to the system A x = b

    See Also
    --------
    cholesky_banded : Cholesky factorization of a banded matrix

    Notes
    -----

    .. versionadded:: 0.8.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cholesky_banded, cho_solve_banded
    >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
    >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
    >>> A = A + A.conj().T + np.diag(Ab[2, :])
    >>> c = cholesky_banded(Ab)
    >>> x = cho_solve_banded((c, False), np.ones(5))
    >>> np.allclose(A @ x - np.ones(5), np.zeros(5))
    True

    r   z&shapes of cb and b are not compatible.r   r   Tr   )pbtrsr+   z(%dth leading minor not positive definitez0illegal value in %dth argument of internal pbtrs)r   r   r   r   r   r   r   r4   r   r   r-   r   r	   r   )cb_and_lowerr/   r,   r   cbr   mr    r7   r1   r"   r#   r#   r$   r   G  s*   .

 r   )FFTT)FFT)FT)__doc__numpyr   r   r   r   r   _miscr   r   lapackr	   __all__r%   r
   r   r   r   r   r#   r#   r#   r$   <module>   s    

 
<
L
AP