o
    ?HhO                     @   s   d Z ddlZddlmZ ddlmZ dgZg dZ	G dd	 d	Z
					dddZdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd ZdS )z
Unified interfaces to root finding algorithms for real or complex
scalar functions.

Functions
---------
- root : find a root of a scalar function.
    N   )	_zeros_pyapprox_derivativeroot_scalar)bisectbrentqbrenthriddertoms748newtonsecanthalleyc                   @   s8   e Zd ZdZdd Zdd Zdd Zdd	 Zd
d ZdS )
MemoizeDera  Decorator that caches the value and derivative(s) of function each
    time it is called.

    This is a simplistic memoizer that calls and caches a single value
    of ``f(x, *args)``.
    It assumes that `args` does not change between invocations.
    It supports the use case of a root-finder where `args` is fixed,
    `x` changes, and only rarely, if at all, does x assume the same value
    more than once.c                 C   s   || _ d | _d | _d| _d S Nr   )funvalsxn_calls)selfr    r   [/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/scipy/optimize/_root_scalar.py__init__   s   
zMemoizeDer.__init__c                 G   sR   | j du s
|| jkr$| j|g|R  }|| _|  jd7  _|dd | _ | j d S )z,Calculate f or use cached value if availableNr   r   )r   r   r   r   )r   r   argsfgr   r   r   __call__$   s   
zMemoizeDer.__call__c                 G   .   | j du s
|| jkr| |g|R   | j d S )z/Calculate f' or use a cached value if availableNr   r   r   r   r   r   r   r   r   fprime.      
zMemoizeDer.fprimec                 G   r   )z0Calculate f'' or use a cached value if availableN   r   r   r   r   r   fprime24   r    zMemoizeDer.fprime2c                 C   s   | j S )N)r   )r   r   r   r   ncalls:   s   zMemoizeDer.ncallsN)	__name__
__module____qualname____doc__r   r   r   r"   r#   r   r   r   r   r      s    	
r   r   c              
      s  t |ts|f}|du ri }d}|dur+t|s+t|r)t  d} j} j}nd}|durCt|sCt|rAt  d} j}nd}i }dD ]}t |}|durW|||< qG|r_|	| |j	ddd |s|durod}n|dur|r}|rzd}nd}n	|durd	}nd}|st
d
| }ddd}ztt|||}W n ty } zt
d| |d}~ww |dv rt |tttjfst
d| |dd \}}z| ||fd|i|\}}W n t
y } zt|drtj|jtj|jt||d}n W Y d}~nd}~ww |dv r;|du rt
d| d|v r*|d|d< | |f|dd|d|\}}n~|dv rq|du rLt
d| |sU fdd}d|v ra|d|d< | |f||dd|\}}nH|dv r|du rt
d| |st
d| |st
d| d|v r|d|d< | |f|||d|\}}nt
d| |r j}||_|S )a  
    Find a root of a scalar function.

    Parameters
    ----------
    f : callable
        A function to find a root of.

        Suppose the callable has signature ``f0(x, *my_args, **my_kwargs)``, where
        ``my_args`` and ``my_kwargs`` are required positional and keyword arguments.
        Rather than passing ``f0`` as the callable, wrap it to accept
        only ``x``; e.g., pass ``fun=lambda x: f0(x, *my_args, **my_kwargs)`` as the
        callable, where ``my_args`` (tuple) and ``my_kwargs`` (dict) have been
        gathered before invoking this function.
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative(s).
    method : str, optional
        Type of solver.  Should be one of

        - 'bisect'    :ref:`(see here) <optimize.root_scalar-bisect>`
        - 'brentq'    :ref:`(see here) <optimize.root_scalar-brentq>`
        - 'brenth'    :ref:`(see here) <optimize.root_scalar-brenth>`
        - 'ridder'    :ref:`(see here) <optimize.root_scalar-ridder>`
        - 'toms748'    :ref:`(see here) <optimize.root_scalar-toms748>`
        - 'newton'    :ref:`(see here) <optimize.root_scalar-newton>`
        - 'secant'    :ref:`(see here) <optimize.root_scalar-secant>`
        - 'halley'    :ref:`(see here) <optimize.root_scalar-halley>`

    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  ``f(x, *args)`` must have different
        signs at the two endpoints.
    x0 : float, optional
        Initial guess.
    x1 : float, optional
        A second guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the derivative.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, optional
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of the objective function and of the
        first and second derivatives.
        `fprime2` can also be a callable returning the second derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options : dict, optional
        A dictionary of solver options. E.g., ``k``, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : RootResults
        The solution represented as a ``RootResults`` object.
        Important attributes are: ``root`` the solution , ``converged`` a
        boolean flag indicating if the algorithm exited successfully and
        ``flag`` which describes the cause of the termination. See
        `RootResults` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers
    root : Find a root of a vector function.

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter.

    The default is to use the best method available for the situation
    presented.
    If a bracket is provided, it may use one of the bracketing methods.
    If a derivative and an initial value are specified, it may
    select one of the derivative-based methods.
    If no method is judged applicable, it will raise an Exception.

    Arguments for each method are as follows (x=required, o=optional).

    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    |                    method                     | f | args | bracket | x0 | x1 | fprime | fprime2 | xtol | rtol | maxiter | options |
    +===============================================+===+======+=========+====+====+========+=========+======+======+=========+=========+
    | :ref:`bisect <optimize.root_scalar-bisect>`   | x |  o   |    x    |    |    |        |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`brentq <optimize.root_scalar-brentq>`   | x |  o   |    x    |    |    |        |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`brenth <optimize.root_scalar-brenth>`   | x |  o   |    x    |    |    |        |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`ridder <optimize.root_scalar-ridder>`   | x |  o   |    x    |    |    |        |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`toms748 <optimize.root_scalar-toms748>` | x |  o   |    x    |    |    |        |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`secant <optimize.root_scalar-secant>`   | x |  o   |         | x  | o  |        |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`newton <optimize.root_scalar-newton>`   | x |  o   |         | x  |    |   o    |         |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
    | :ref:`halley <optimize.root_scalar-halley>`   | x |  o   |         | x  |    |   x    |    x    |  o   |  o   |    o    |   o     |
    +-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+

    Examples
    --------

    Find the root of a simple cubic

    >>> from scipy import optimize
    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    >>> def fprime(x):
    ...     return 3*x**2

    The `brentq` method takes as input a bracket

    >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 10, 11)

    The `newton` method takes as input a single point and uses the
    derivative(s).

    >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 22)

    The function can provide the value and derivative(s) in a single call.

    >>> def f_p_pp(x):
    ...     return (x**3 - 1), 3*x**2, 6*x

    >>> sol = optimize.root_scalar(
    ...     f_p_pp, x0=0.2, fprime=True, method='newton'
    ... )
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 11, 11)

    >>> sol = optimize.root_scalar(
    ...     f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley'
    ... )
    >>> sol.root, sol.iterations, sol.function_calls
    (1.0, 7, 8)


    NFT)xtolrtolmaxiter)full_outputdispr   r   r   r   zIUnable to select a solver as neither bracket nor starting point provided.)r   r   zUnknown solver )r   r
   r   r	   r   zBracket needed for r!   r   _x)root
iterationsfunction_callsflagmethod)r   zx0 must not be None for r(   tol)r   r   r"   x1)r   c                    s     fdd}t || d|dd S )Nc                    s    | d g|R  S r   r   )r   r   fr   r   	f_wrappedA  s   z.root_scalar.<locals>.fprime.<locals>.f_wrappedz2-point)r2   r   r   r   )r   r   r7   r5   r   r   r   9  s   zroot_scalar.<locals>.fprime)r   r   r"   )r   zfprime must be specified for zfprime2 must be specified for )
isinstancetuplecallableboolr   r"   r   localsgetupdate
ValueErrorlowergetattroptzerosAttributeErrorlistnpndarrayhasattrRootResultsr-   nan_function_callsstrpopr   r0   )r6   r   r2   bracketr   r"   x0r4   r(   r)   r*   optionsis_memoizedkwargskvmethmap2underlyingmethodceabrsolr   r   r5   r   r   >   s    



 








 c                   C      dS )aA  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  ``f(x, *args)`` must have different
        signs at the two endpoints.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above

    Nr   r   r   r   r   _root_scalar_brentq_doc_     r]   c                   C   r\   aB  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    bracket: A sequence of 2 floats, optional
        An interval bracketing a root.  ``f(x, *args)`` must have different
        signs at the two endpoints.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_brenth_docu  r^   r`   c                   C   r\   r_   r   r   r   r   r   _root_scalar_toms748_doc  r^   ra   c                   C   r\   )a^  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    x1 : float, optional
        A second guess. Must be different from `x0`. If not specified,
        a value near `x0` will be chosen.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_secant_doc  s   rb   c                   C   r\   )a"  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function and its derivative.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    fprime : bool or callable, optional
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_newton_doc  s   rc   c                   C   r\   )ar  
    Options
    -------
    args : tuple, optional
        Extra arguments passed to the objective function and its derivatives.
    xtol : float, optional
        Tolerance (absolute) for termination.
    rtol : float, optional
        Tolerance (relative) for termination.
    maxiter : int, optional
        Maximum number of iterations.
    x0 : float, required
        Initial guess.
    fprime : bool or callable, required
        If `fprime` is a boolean and is True, `f` is assumed to return the
        value of derivative along with the objective function.
        `fprime` can also be a callable returning the derivative of `f`. In
        this case, it must accept the same arguments as `f`.
    fprime2 : bool or callable, required
        If `fprime2` is a boolean and is True, `f` is assumed to return the
        value of 1st and 2nd derivatives along with the objective function.
        `fprime2` can also be a callable returning the 2nd derivative of `f`.
        In this case, it must accept the same arguments as `f`.
    options: dict, optional
        Specifies any method-specific options not covered above.

    Nr   r   r   r   r   _root_scalar_halley_doc  s   rd   c                   C   r\   r_   r   r   r   r   r   _root_scalar_ridder_doc  r^   re   c                   C   r\   r_   r   r   r   r   r   _root_scalar_bisect_doc  r^   rf   )r   NNNNNNNNNN)r'   numpyrE    r   rB   _numdiffr   __all__ROOT_SCALAR_METHODSr   r   r]   r`   ra   rb   rc   rd   re   rf   r   r   r   r   <module>   s.    *
  #