o
    ?Hh+                     @   s   d Z dgZddlZddlmZ ddlmZ ddlm	Z	 ddlm
Z
 dd	lmZ dd
lmZ e	je
jejejdZe	je
jejejdZdddZG dd dZ				dddZdS )a  
Python wrapper for PROPACK
--------------------------

PROPACK is a collection of Fortran routines for iterative computation
of partial SVDs of large matrices or linear operators.

Based on BSD licensed pypropack project:
  http://github.com/jakevdp/pypropack
  Author: Jake Vanderplas <vanderplas@astro.washington.edu>

PROPACK source is BSD licensed, and available at
  http://soi.stanford.edu/~rmunk/PROPACK/
_svdp    N)aslinearoperator)LinAlgError   )	_spropack)	_dpropack)	_cpropack)	_zpropack)fdFDLS)LMSMc                   @   s8   e Zd ZdZdd Zdd Zedd Zedd	 Zd
S )_AProdz
    Wrapper class for linear operator

    The call signature of the __call__ method matches the callback of
    the PROPACK routines.
    c                 C   s6   zt || _W d S  ty   t t|| _Y d S w N)r   A	TypeErrornpasarray)selfr    r   Y/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/scipy/sparse/linalg/_svdp.py__init__9   s
   z_AProd.__init__c                 C   s8   |dkr| j ||d d < d S | j ||d d < d S )Nn)r   matvecrmatvec)r   transamr   xysparmiparmr   r   r   __call__?   s   z_AProd.__call__c                 C   s   | j jS r   )r   shaper   r   r   r   r&   E   s   z_AProd.shapec              	   C   s:   z| j jW S  ty   | j t| j jd j Y S w )Nr   )r   dtypeAttributeErrorr   r   zerosr&   r'   r   r   r   r(   I   s
   
 z_AProd.dtypeN)	__name__
__module____qualname____doc__r   r%   propertyr&   r(   r   r   r   r   r   2   s    
r   r   TFMb`?c           +      C   s  |du rt d| }|dvrt d|s|dkrt dt| }|jj}z
t| }t| }W n( tyX   t	tj
d|drHttj}nttj}t| }t| }Y nw |j\}}|d	k si|t||krmt d
|du rud| }|du r{d}t|d	 |d	 |}||k rt d| d| d|rdnd}|rdnd}tj||d	 fd|d}tj||fd|d}|du r|j|d|dddf< t	tj
d|dr|dddf  d|j|d 7  < nz
||dddf< W n t y   t d| w |
du r
tt|j}
|du rt|jd }|rItj|
|||f| d}|du r0|| }|t|| ||kr?t d|dk rHt dntj|
||f| d}tjtt|tt|fdd}d}|sn|r|| d|  d| |  d td| | d|  d |t||  } d | }!n!|| d|  d!| |  d t|| d| d  } d!| d	 }!tj
| | d}"tj
|!tjd}#tj
d	| d}$tj
d	tjd}%| rtj
|| d"|  |d}&|"|&|#f}'n|"|#f}'|r|t| |||||||||||	g|'|||$|%R  \}}(})}}*n||||||||||	g	|'|||$|%R  \}}(})}}*|*dkrFtd#|* d$|*dk rVtd%| d&| d'|ddd|f |(|ddd|f  j|)fS )(ax  
    Compute the singular value decomposition of a linear operator using PROPACK

    Parameters
    ----------
    A : array_like, sparse matrix, or LinearOperator
        Operator for which SVD will be computed.  If `A` is a LinearOperator
        object, it must define both ``matvec`` and ``rmatvec`` methods.
    k : int
        Number of singular values/vectors to compute
    which : {"LM", "SM"}
        Which singular triplets to compute:
        - 'LM': compute triplets corresponding to the `k` largest singular
                values
        - 'SM': compute triplets corresponding to the `k` smallest singular
                values
        `which='SM'` requires `irl_mode=True`.  Computes largest singular
        values by default.
    irl_mode : bool, optional
        If `True`, then compute SVD using IRL (implicitly restarted Lanczos)
        mode.  Default is `True`.
    kmax : int, optional
        Maximal number of iterations / maximal dimension of the Krylov
        subspace. Default is ``10 * k``.
    compute_u : bool, optional
        If `True` (default) then compute left singular vectors, `u`.
    compute_v : bool, optional
        If `True` (default) then compute right singular vectors, `v`.
    tol : float, optional
        The desired relative accuracy for computed singular values.
        If not specified, it will be set based on machine precision.
    v0 : array_like, optional
        Starting vector for iterations: must be of length ``A.shape[0]``.
        If not specified, PROPACK will generate a starting vector.
    full_output : bool, optional
        If `True`, then return sigma_bound.  Default is `False`.
    delta : float, optional
        Level of orthogonality to maintain between Lanczos vectors.
        Default is set based on machine precision.
    eta : float, optional
        Orthogonality cutoff.  During reorthogonalization, vectors with
        component larger than `eta` along the Lanczos vector will be purged.
        Default is set based on machine precision.
    anorm : float, optional
        Estimate of ``||A||``.  Default is ``0``.
    cgs : bool, optional
        If `True`, reorthogonalization is done using classical Gram-Schmidt.
        If `False` (default), it is done using modified Gram-Schmidt.
    elr : bool, optional
        If `True` (default), then extended local orthogonality is enforced
        when obtaining singular vectors.
    min_relgap : float, optional
        The smallest relative gap allowed between any shift in IRL mode.
        Default is ``0.001``.  Accessed only if ``irl_mode=True``.
    shifts : int, optional
        Number of shifts per restart in IRL mode.  Default is determined
        to satisfy ``k <= min(kmax-shifts, m, n)``.  Must be
        >= 0, but choosing 0 might lead to performance degradation.
        Accessed only if ``irl_mode=True``.
    maxiter : int, optional
        Maximum number of restarts in IRL mode.  Default is ``1000``.
        Accessed only if ``irl_mode=True``.
    rng : `numpy.random.Generator`, optional
        Pseudorandom number generator state. When `rng` is None, a new
        `numpy.random.Generator` is created using entropy from the
        operating system. Types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a ``Generator``.

    Returns
    -------
    u : ndarray
        The `k` largest (``which="LM"``) or smallest (``which="SM"``) left
        singular vectors, ``shape == (A.shape[0], 3)``, returned only if
        ``compute_u=True``.
    sigma : ndarray
        The top `k` singular values, ``shape == (k,)``
    vt : ndarray
        The `k` largest (``which="LM"``) or smallest (``which="SM"``) right
        singular vectors, ``shape == (3, A.shape[1])``, returned only if
        ``compute_v=True``.
    sigma_bound : ndarray
        the error bounds on the singular values sigma, returned only if
        ``full_output=True``.

    Nz:`rng` must be a normalized numpy.random.Generator instance>   r   r   z#`which` must be either 'LM' or 'SM'r   z#`which`='SM' requires irl_mode=Truer   )r(   r   z.k must be positive and not greater than m or n
   i  z3kmax must be greater than or equal to k, but kmax (z) < k ()r"   r   r   )orderr(   )sizey              ?zv0 must be of length g      ?z0shifts must satisfy k <= min(kmax-shifts, m, n)!zshifts must be >= 0!i   	                      z#An invariant subspace of dimension z was found.zk=z0 singular triplets did not converge within kmax=z iterations)
ValueErrorupperr   r(   char_lansvd_irl_dict_lansvd_dictKeyErrorr   iscomplexobjemptycomplexfloatr&   minr*   uniformsqrtfinfoepsarraylowerintboolmaxint32isupper_which_converterr   conjT)+r   kwhichirl_modekmax	compute_u	compute_vv0full_outputtoldeltaetaanormcgselr
min_relgapshiftsmaxiterrngaprodtyp
lansvd_irllansvdr    r   jobujobvuvdoptionioption	blocksizelworkliworkworkiworkdparmr$   zworkworkssigmabndinfor   r   r   r   Q   s   Y
	$



"	 
6




2)r   TNTTNFr   NNr   FTr0   NNN)r.   __all__numpyr   scipy.sparse.linalgr   scipy.linalgr   _propackr   r   r   r	   slansvddlansvdclansvdzlansvdrB   slansvd_irldlansvd_irlclansvd_irlzlansvd_irlrA   rT   r   r   r   r   r   r   <module>   s8    	