o
    3IhbO                     @  s  d dl mZ d dlmZ d dlmZmZ d dlmZ d dl	m
Z
mZ d dlmZ d dlmZ d dlmZ d d	lmZ d d
lmZ d dlmZ d dlmZmZmZmZ d dlmZ d dl m!Z!m"Z"m#Z# d dl$m%Z% G dd deZ&dd Z'de'egiej(e&< G dd de&e
Z)G dd dee&Z*G dd dee&Z+G dd dee&Z,G dd de&Z-G dd  d eZ.d!d" Z/d#d$ Z0e&e&_1e+e&_2e*e&_3e,e&_4e)e&_5e, e&_6d%S )&    )annotations)product)AddBasic)	StdFactKB)
AtomicExprExpr)Pow)S)default_sort_key)sympifysqrt)ImmutableDenseMatrix)BasisDependentZeroBasisDependentBasisDependentMulBasisDependentAdd)
CoordSys3D)Dyadic
BaseDyadic	DyadicAdd)
VectorKindc                   @  s   e Zd ZU dZdZdZdZded< ded< ded< ded	< ded
< ded< e Z	ded< e
dd Zdd Zdd Zdd Zdd Zdd Zeje_dd Zdd Zeje_dd  Zd.d!d"Ze
d#d$ Zd%d& Zeje_d'd( Zd)d* Zd+d, Zd-S )/Vectorz
    Super class for all Vector classes.
    Ideally, neither this class nor any of its subclasses should be
    instantiated by the user.
    FTg      (@ztype[Vector]
_expr_type	_mul_func	_add_func
_zero_func
_base_func
VectorZerozeror   kindc                 C     | j S )a  
        Returns the components of this vector in the form of a
        Python dictionary mapping BaseVector instances to the
        corresponding measure numbers.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v.components
        {C.i: 3, C.j: 4, C.k: 5}

        )_componentsself r&   S/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/sympy/vector/vector.py
components(   s   zVector.componentsc                 C  s   t | | @ S )z7
        Returns the magnitude of this vector.
        r   r$   r&   r&   r'   	magnitude=      zVector.magnitudec                 C  s   | |    S )z@
        Returns the normalized version of this vector.
        )r)   r$   r&   r&   r'   	normalizeC   r*   zVector.normalizec                 C  s   | | }| |}|dS )aM  
        Check if ``self`` and ``other`` are identically equal vectors.

        Explanation
        ===========

        Checks if two vector expressions are equal for all possible values of
        the symbols present in the expressions.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy.abc import x, y
        >>> from sympy import pi
        >>> C = CoordSys3D('C')

        Compare vectors that are equal or not:

        >>> C.i.equals(C.j)
        False
        >>> C.i.equals(C.i)
        True

        These two vectors are equal if `x = y` but are not identically equal
        as expressions since for some values of `x` and `y` they are unequal:

        >>> v1 = x*C.i + C.j
        >>> v2 = y*C.i + C.j
        >>> v1.equals(v1)
        True
        >>> v1.equals(v2)
        False

        Vectors from different coordinate systems can be compared:

        >>> D = C.orient_new_axis('D', pi/2, C.i)
        >>> D.j.equals(C.j)
        False
        >>> D.j.equals(C.k)
        True

        Parameters
        ==========

        other: Vector
            The other vector expression to compare with.

        Returns
        =======

        ``True``, ``False`` or ``None``. A return value of ``True`` indicates
        that the two vectors are identically equal. A return value of ``False``
        indicates that they are not. In some cases it is not possible to
        determine if the two vectors are identically equal and ``None`` is
        returned.

        See Also
        ========

        sympy.core.expr.Expr.equals
        r   )dotequals)r%   otherdiff	diff_mag2r&   r&   r'   r-   I   s   ?

zVector.equalsc                   s   t |tr/t  trtjS tj}|j D ]\}}|jd  }||| |jd  7 }q|S ddl	m
} t ||tfsFtt|d d t ||rS fdd}|S t |S )aN  
        Returns the dot product of this Vector, either with another
        Vector, or a Dyadic, or a Del operator.
        If 'other' is a Vector, returns the dot product scalar (SymPy
        expression).
        If 'other' is a Dyadic, the dot product is returned as a Vector.
        If 'other' is an instance of Del, returns the directional
        derivative operator as a Python function. If this function is
        applied to a scalar expression, it returns the directional
        derivative of the scalar field wrt this Vector.

        Parameters
        ==========

        other: Vector/Dyadic/Del
            The Vector or Dyadic we are dotting with, or a Del operator .

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, Del
        >>> C = CoordSys3D('C')
        >>> delop = Del()
        >>> C.i.dot(C.j)
        0
        >>> C.i & C.i
        1
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v.dot(C.k)
        5
        >>> (C.i & delop)(C.x*C.y*C.z)
        C.y*C.z
        >>> d = C.i.outer(C.i)
        >>> C.i.dot(d)
        C.i

        r      )Delz is not a vector, dyadic or zdel operatorc                   s   ddl m} ||  S )Nr   )directional_derivative)sympy.vector.functionsr3   )fieldr3   r$   r&   r'   r3      s   
z*Vector.dot.<locals>.directional_derivative)
isinstancer   r   r   r    r(   itemsargsr,   sympy.vector.deloperatorr2   	TypeErrorstr)r%   r.   outveckvvect_dotr2   r3   r&   r$   r'   r,      s"   
(


z
Vector.dotc                 C  
   |  |S Nr,   r%   r.   r&   r&   r'   __and__      
zVector.__and__c                 C  sn   t |tr2t | trtjS tj}|j D ]\}}| |jd }||jd }||| 7 }q|S t| |S )a  
        Returns the cross product of this Vector with another Vector or
        Dyadic instance.
        The cross product is a Vector, if 'other' is a Vector. If 'other'
        is a Dyadic, this returns a Dyadic instance.

        Parameters
        ==========

        other: Vector/Dyadic
            The Vector or Dyadic we are crossing with.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> C.i.cross(C.j)
        C.k
        >>> C.i ^ C.i
        0
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v ^ C.i
        5*C.j + (-4)*C.k
        >>> d = C.i.outer(C.i)
        >>> C.j.cross(d)
        (-1)*(C.k|C.i)

        r   r1   )	r6   r   r   r    r(   r7   crossr8   outer)r%   r.   outdyadr=   r>   cross_productrG   r&   r&   r'   rF      s   
 

zVector.crossc                 C  r@   rA   rF   rC   r&   r&   r'   __xor__   rE   zVector.__xor__c                 C  sT   t |ts	tdt | tst |trtjS dd t| j |j D }t	| S )a  
        Returns the outer product of this vector with another, in the
        form of a Dyadic instance.

        Parameters
        ==========

        other : Vector
            The Vector with respect to which the outer product is to
            be computed.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> N = CoordSys3D('N')
        >>> N.i.outer(N.j)
        (N.i|N.j)

        z!Invalid operand for outer productc                 S  s*   g | ]\\}}\}}|| t || qS r&   )r   ).0k1v1k2v2r&   r&   r'   
<listcomp>  s   * z Vector.outer.<locals>.<listcomp>)
r6   r   r:   r   r   r    r   r(   r7   r   )r%   r.   r8   r&   r&   r'   rG      s   

zVector.outerc                 C  sL   |  tjr|rtjS tjS |r| || |  S | || |  |  S )a  
        Returns the vector or scalar projection of the 'other' on 'self'.

        Examples
        ========

        >>> from sympy.vector.coordsysrect import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> i, j, k = C.base_vectors()
        >>> v1 = i + j + k
        >>> v2 = 3*i + 4*j
        >>> v1.projection(v2)
        7/3*C.i + 7/3*C.j + 7/3*C.k
        >>> v1.projection(v2, scalar=True)
        7/3

        )r-   r   r    r
   Zeror,   )r%   r.   scalarr&   r&   r'   
projection$  s
   zVector.projectionc                   sP   ddl m} t trtjtjtjfS tt|  }t	 fdd|D S )a  
        Returns the components of this vector but the output includes
        also zero values components.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, Vector
        >>> C = CoordSys3D('C')
        >>> v1 = 3*C.i + 4*C.j + 5*C.k
        >>> v1._projections
        (3, 4, 5)
        >>> v2 = C.x*C.y*C.z*C.i
        >>> v2._projections
        (C.x*C.y*C.z, 0, 0)
        >>> v3 = Vector.zero
        >>> v3._projections
        (0, 0, 0)
        r   )_get_coord_systemsc                      g | ]}  |qS r&   rB   rL   ir$   r&   r'   rQ   X      z'Vector._projections.<locals>.<listcomp>)
sympy.vector.operatorsrU   r6   r   r
   rR   nextiterbase_vectorstuple)r%   rU   base_vecr&   r$   r'   _projections>  s
   
zVector._projectionsc                 C  r@   rA   )rG   rC   r&   r&   r'   __or__Z  rE   zVector.__or__c                   s   t  fdd| D S )a  
        Returns the matrix form of this vector with respect to the
        specified coordinate system.

        Parameters
        ==========

        system : CoordSys3D
            The system wrt which the matrix form is to be computed

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> from sympy.abc import a, b, c
        >>> v = a*C.i + b*C.j + c*C.k
        >>> v.to_matrix(C)
        Matrix([
        [a],
        [b],
        [c]])

        c                   rV   r&   rB   )rL   unit_vecr$   r&   r'   rQ   y  rY   z$Vector.to_matrix.<locals>.<listcomp>)Matrixr]   )r%   systemr&   r$   r'   	to_matrix_  s   zVector.to_matrixc                 C  s:   i }| j  D ]\}}||jtj||  ||j< q|S )a  
        The constituents of this vector in different coordinate systems,
        as per its definition.

        Returns a dict mapping each CoordSys3D to the corresponding
        constituent Vector.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> R1 = CoordSys3D('R1')
        >>> R2 = CoordSys3D('R2')
        >>> v = R1.i + R2.i
        >>> v.separate() == {R1: R1.i, R2: R2.i}
        True

        )r(   r7   getrd   r   r    )r%   partsvectmeasurer&   r&   r'   separate|  s   zVector.separatec                 C  sR   t | trt |trtdt | tr%|tjkrtdt| t|tjS td)z( Helper for division involving vectors. zCannot divide two vectorszCannot divide a vector by zeroz#Invalid division involving a vector)	r6   r   r:   r
   rR   
ValueError	VectorMulr	   NegativeOne)oner.   r&   r&   r'   _div_helper  s   

zVector._div_helperN)F)__name__
__module____qualname____doc__	is_scalar	is_Vector_op_priority__annotations__r   r!   propertyr(   r)   r+   r-   r,   rD   rF   rK   rG   rT   r`   ra   re   rj   ro   r&   r&   r&   r'   r      s@   
 
C>,
$
r   c                   s    fdd}|S )Nc                   sN   t ti  }g }| jD ]}t|jtr|| q|tkr%t| jddS d S )NF)deep)r   	VectorAddr8   r6   r!   r   appenddoit)expr	vec_classvectorstermclsr&   r'   _postprocessor  s   

z)get_postprocessor.<locals>._postprocessorr&   )r   r   r&   r   r'   get_postprocessor  s   	r   r   c                      sR   e Zd ZdZd fdd	Zedd Zdd Zd	d
 Zedd Z	dd Z
  ZS )
BaseVectorz)
    Class to denote a base vector.

    Nc                   s   |d u r	d |}|d u rd |}t|}t|}|tddvr%tdt|ts.td|j| }t 	| t
||}||_|t
ji|_t
j|_|jd | |_d| |_||_||_||f|_d	d
i}t||_||_|S )Nzx{}zx_{}r      zindex must be 0, 1 or 2zsystem should be a CoordSys3D. commutativeT)formatr;   rangerk   r6   r   r:   _vector_namessuper__new__r
   _base_instanceOner#   _measure_number_name_pretty_form_latex_form_system_idr   _assumptions_sys)r   indexrd   
pretty_str	latex_strnameobjassumptions	__class__r&   r'   r     s0   






zBaseVector.__new__c                 C  r"   rA   )r   r$   r&   r&   r'   rd        zBaseVector.systemc                 C  r"   rA   )r   )r%   printerr&   r&   r'   	_sympystr  s   zBaseVector._sympystrc                 C  s"   | j \}}||d |j|  S )Nr   )r   _printr   )r%   r   r   rd   r&   r&   r'   
_sympyrepr  s   
zBaseVector._sympyreprc                 C  s   | hS rA   r&   r$   r&   r&   r'   free_symbols  r   zBaseVector.free_symbolsc                 C  s   | S rA   r&   r$   r&   r&   r'   _eval_conjugate  s   zBaseVector._eval_conjugate)NN)rp   rq   rr   rs   r   rx   rd   r   r   r   r   __classcell__r&   r&   r   r'   r     s    #

r   c                   @      e Zd ZdZdd Zdd ZdS )rz   z2
    Class to denote sum of Vector instances.
    c                 O     t j| g|R i |}|S rA   )r   r   r   r8   optionsr   r&   r&   r'   r        zVectorAdd.__new__c           	      C  sz   d}t |   }|jdd d |D ]"\}}| }|D ]}||jv r5| j| | }|||d 7 }qq|d d S )Nr   c                 S  s   | d   S )Nr   )__str__)xr&   r&   r'   <lambda>  s    z%VectorAdd._sympystr.<locals>.<lambda>keyz + )listrj   r7   sortr]   r(   r   )	r%   r   ret_strr7   rd   rh   
base_vectsr   	temp_vectr&   r&   r'   r     s   
zVectorAdd._sympystrN)rp   rq   rr   rs   r   r   r&   r&   r&   r'   rz     s    rz   c                   @  s0   e Zd ZdZdd Zedd Zedd ZdS )	rl   z>
    Class to denote products of scalars and BaseVectors.
    c                 O  r   rA   )r   r   r   r&   r&   r'   r     r   zVectorMul.__new__c                 C  r"   )z) The BaseVector involved in the product. )r   r$   r&   r&   r'   base_vector  s   zVectorMul.base_vectorc                 C  r"   )zU The scalar expression involved in the definition of
        this VectorMul.
        )r   r$   r&   r&   r'   measure_number  s   zVectorMul.measure_numberN)rp   rq   rr   rs   r   rx   r   r   r&   r&   r&   r'   rl     s    
rl   c                   @  s$   e Zd ZdZdZdZdZdd ZdS )r   z'
    Class to denote a zero vector
    g333333(@0z\mathbf{\hat{0}}c                 C  s   t | }|S rA   )r   r   )r   r   r&   r&   r'   r   %  s   
zVectorZero.__new__N)rp   rq   rr   rs   rv   r   r   r   r&   r&   r&   r'   r     s    r   c                   @  r   )Crossa  
    Represents unevaluated Cross product.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Cross
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> Cross(v1, v2)
    Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k)
    >>> Cross(v1, v2).doit()
    (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k

    c                 C  sJ   t |}t |}t|t|krt|| S t| ||}||_||_|S rA   )r   r   r   r   r   _expr1_expr2r   expr1expr2r   r&   r&   r'   r   <  s   zCross.__new__c                 K     t | j| jS rA   )rF   r   r   r%   hintsr&   r&   r'   r|   F     z
Cross.doitNrp   rq   rr   rs   r   r|   r&   r&   r&   r'   r   *  s    
r   c                   @  r   )Dota  
    Represents unevaluated Dot product.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Dot
    >>> from sympy import symbols
    >>> R = CoordSys3D('R')
    >>> a, b, c = symbols('a b c')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = a * R.i + b * R.j + c * R.k
    >>> Dot(v1, v2)
    Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k)
    >>> Dot(v1, v2).doit()
    a + b + c

    c                 C  sB   t |}t |}t||gtd\}}t| ||}||_||_|S )Nr   )r   sortedr   r   r   r   r   r   r&   r&   r'   r   ^  s   zDot.__new__c                 K  r   rA   )r,   r   r   r   r&   r&   r'   r|   g  r   zDot.doitNr   r&   r&   r&   r'   r   J  s    	r   c                   s  t  trtfdd jD S t tr$t fddjD S t  trt tr jjkre jd }jd }||krEtjS h d	||h
 }|d d |krZdnd}| j |  S dd	lm} z| j}W n ty   t  Y S w t|S t  tst trtjS t  trtt j \}}	|	t| S t trttj \}
}|t |
 S t S )
a^  
    Returns cross product of two vectors.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector.vector import cross
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> cross(v1, v2)
    (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k

    c                 3      | ]}t | V  qd S rA   rJ   rW   vect2r&   r'   	<genexpr>|      zcross.<locals>.<genexpr>c                 3      | ]}t  |V  qd S rA   rJ   rW   vect1r&   r'   r   ~  r   r   >   r   r1      r1   r   express)r6   r   rz   fromiterr8   r   r   r   r    
differencepopr]   	functionsr   rk   r   rF   r   rl   r[   r\   r(   r7   )r   r   n1n2n3signr   r>   rN   m1rP   m2r&   r   r   r'   rF   k  s:   







rF   c                   s@  t  trtfdd jD S t tr$t fddjD S t  tr`t tr` jjkr> kr;tjS tjS ddl	m
} z| j}W n tyZ   t  Y S w t |S t  tsjt trmtjS t  trtt j \}}|t| S t trttj \}}|t | S t S )a2  
    Returns dot product of two vectors.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector.vector import dot
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> dot(v1, v2)
    R.x + R.y + R.z

    c                 3  r   rA   rB   rW   r   r&   r'   r     r   zdot.<locals>.<genexpr>c                 3  r   rA   rB   rW   r   r&   r'   r     r   r1   r   )r6   r   r   r8   r   r   r
   r   rR   r   r   rk   r   r,   r   rl   r[   r\   r(   r7   )r   r   r   r>   rN   r   rP   r   r&   r   r'   r,     s.   





r,   N)7
__future__r   	itertoolsr   
sympy.corer   r   sympy.core.assumptionsr   sympy.core.exprr   r   sympy.core.powerr	   sympy.core.singletonr
   sympy.core.sortingr   sympy.core.sympifyr   (sympy.functions.elementary.miscellaneousr   sympy.matrices.immutabler   rc   sympy.vector.basisdependentr   r   r   r   sympy.vector.coordsysrectr   sympy.vector.dyadicr   r   r   sympy.vector.kindr   r   r   "_constructor_postprocessor_mappingr   rz   rl   r   r   r   rF   r,   r   r   r   r   r   r    r&   r&   r&   r'   <module>   sH       

< !0*