o
    ?Hh                     @   s`   d dl Zd dlmZ g dZedddZdd Zeddd	Zedd
dZ	edddZ
dS )    N)	decorator)delaunay_plot_2dconvex_hull_plot_2dvoronoi_plot_2dc              	   K   s   dd l m} |d u r| }| }| |fd|i|S t|ddd  }|r1| |fd|i|S z|d | |fd|i|W || S || w )Nr   axisholdc                   S   s   dS )NT r   r   r   X/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/scipy/spatial/_plotutils.py<lambda>   s    z_held_figure.<locals>.<lambda>T)matplotlib.pyplotpyplotfiguregcagetattrhold)funcobjr   kwpltfigwas_heldr   r   r	   _held_figure   s   
r   c                 C   s^   dt j|dd }|jdd| }|jdd| }| |d |d  | |d |d  d S )Ng?r   axis   )npptpminmaxset_xlimset_ylim)r   pointsmarginxy_minxy_maxr   r   r	   _adjust_bounds   s
   r%   c                 C   sX   | j jd dkrtd| j j\}}|||d |||| j  t|| j  |j	S )aB  
    Plot the given Delaunay triangulation in 2-D

    Parameters
    ----------
    tri : scipy.spatial.Delaunay instance
        Triangulation to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    Delaunay
    matplotlib.pyplot.triplot

    Notes
    -----
    Requires Matplotlib.

    Examples
    --------

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.spatial import Delaunay, delaunay_plot_2d

    The Delaunay triangulation of a set of random points:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((30, 2))
    >>> tri = Delaunay(points)

    Plot it:

    >>> _ = delaunay_plot_2d(tri)
    >>> plt.show()

    r      z!Delaunay triangulation is not 2-Do)
r!   shape
ValueErrorTplottriplot	simplicescopyr%   r   )trir   xyr   r   r	   r   $   s   -r   c                    s   ddl m}  jjd dkrtd| jdddf  jdddf d  fdd	 jD }|||d
dd t| j |j	S )a&  
    Plot the given convex hull diagram in 2-D

    Parameters
    ----------
    hull : scipy.spatial.ConvexHull instance
        Convex hull to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    ConvexHull

    Notes
    -----
    Requires Matplotlib.


    Examples
    --------

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.spatial import ConvexHull, convex_hull_plot_2d

    The convex hull of a random set of points:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((30, 2))
    >>> hull = ConvexHull(points)

    Plot it:

    >>> _ = convex_hull_plot_2d(hull)
    >>> plt.show()

    r   LineCollectionr   r&   zConvex hull is not 2-DNr'   c                    s   g | ]} j | qS r   )r!   ).0simplexhullr   r	   
<listcomp>   s    z'convex_hull_plot_2d.<locals>.<listcomp>ksolid)colors	linestyle)
matplotlib.collectionsr3   r!   r(   r)   r+   r-   add_collectionr%   r   )r7   r   r3   line_segmentsr   r6   r	   r   ]   s   -*r   c              	   K   s<  ddl m} | jjd dkrtd|ddr5|dd	}|j| jd	d	df | jd	d	df d
|d |ddrP|| jd	d	df | jd	d	df d |dd}|dd}|dd}| jjdd}t	j
| jdd}	g }
g }t| j| jD ]\}}t	|}t	|dkr|
| j|  q|||dk d }| j|d  | j|d   }|t	j| }t	|d  |d g}| j| jdd}t	t	|| || }| jr| }t|	 |	  }| j| ||	  |  }|| j| |g q||||
|||dd ||||||dd t|| j |jS )ae  
    Plot the given Voronoi diagram in 2-D

    Parameters
    ----------
    vor : scipy.spatial.Voronoi instance
        Diagram to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on
    show_points : bool, optional
        Add the Voronoi points to the plot.
    show_vertices : bool, optional
        Add the Voronoi vertices to the plot.
    line_colors : string, optional
        Specifies the line color for polygon boundaries
    line_width : float, optional
        Specifies the line width for polygon boundaries
    line_alpha : float, optional
        Specifies the line alpha for polygon boundaries
    point_size : float, optional
        Specifies the size of points

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    Voronoi

    Notes
    -----
    Requires Matplotlib. For degenerate input, including collinearity and
    other violations of general position, it may be preferable to
    calculate the Voronoi diagram with Qhull options ``QJ`` for random
    joggling, or ``Qt`` to enforce triangulated output. Otherwise, some
    Voronoi regions may not be visible.

    Examples
    --------
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.spatial import Voronoi, voronoi_plot_2d

    Create a set of points for the example:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((10,2))

    Generate the Voronoi diagram for the points:

    >>> vor = Voronoi(points)

    Use `voronoi_plot_2d` to plot the diagram:

    >>> fig = voronoi_plot_2d(vor)

    Use `voronoi_plot_2d` to plot the diagram again, with some settings
    customized:

    >>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
    ...                       line_width=2, line_alpha=0.6, point_size=2)
    >>> plt.show()

    r   r2   r   r&   zVoronoi diagram is not 2-Dshow_pointsT
point_sizeN.)
markersizeshow_verticesr'   line_colorsr9   
line_widthg      ?
line_alphar   r:   )r;   lwalphar<   dashed)r=   r3   r!   r(   r)   getr+   verticesmeanr   r   zipridge_pointsridge_verticesasarrayallappendlinalgnormarraysigndotfurthest_siteabsr   r   r>   r%   r   )vorr   r   r3   rA   rE   rF   rG   center	ptp_boundfinite_segmentsinfinite_segmentspointidxr5   itnmidpoint	directionaspect_factor	far_pointr   r   r	   r      sX   D.*
r   )N)numpyr   scipy._lib.decoratorr   
_decorator__all__r   r%   r   r   r   r   r   r   r	   <module>   s    8;