o
    ?Hh5                     @   s   d Z ddlmZmZ ddlZddlmZmZm	Z	m
Z
mZ ddlmZmZ ddlmZmZ ddlmZmZmZmZmZ dd	lmZmZmZmZ dd
lmZ ddlm Z m!Z! ddl"m#Z# G dd de#eeZ$dS )z
Sequential feature selection
    )IntegralRealN   )BaseEstimatorMetaEstimatorMixin_fit_contextcloneis_classifier)check_scoringget_scorer_names)check_cvcross_val_score)MetadataRouterMethodMapping_raise_for_params_routing_enabledprocess_routing)
HasMethodsInterval
RealNotInt
StrOptions)get_tags)check_is_fittedvalidate_data   )SelectorMixinc                	       s   e Zd ZU dZedggedheeddddeeddd	dgdee	ddd	dged
dhgdee
e egdgdegdZeed< ddd
ddddddZedddddZdd Zdd Z fddZdd Z  ZS ) SequentialFeatureSelectora  Transformer that performs Sequential Feature Selection.

    This Sequential Feature Selector adds (forward selection) or
    removes (backward selection) features to form a feature subset in a
    greedy fashion. At each stage, this estimator chooses the best feature to
    add or remove based on the cross-validation score of an estimator. In
    the case of unsupervised learning, this Sequential Feature Selector
    looks only at the features (X), not the desired outputs (y).

    Read more in the :ref:`User Guide <sequential_feature_selection>`.

    .. versionadded:: 0.24

    Parameters
    ----------
    estimator : estimator instance
        An unfitted estimator.

    n_features_to_select : "auto", int or float, default="auto"
        If `"auto"`, the behaviour depends on the `tol` parameter:

        - if `tol` is not `None`, then features are selected while the score
          change does not exceed `tol`.
        - otherwise, half of the features are selected.

        If integer, the parameter is the absolute number of features to select.
        If float between 0 and 1, it is the fraction of features to select.

        .. versionadded:: 1.1
           The option `"auto"` was added in version 1.1.

        .. versionchanged:: 1.3
           The default changed from `"warn"` to `"auto"` in 1.3.

    tol : float, default=None
        If the score is not incremented by at least `tol` between two
        consecutive feature additions or removals, stop adding or removing.

        `tol` can be negative when removing features using `direction="backward"`.
        `tol` is required to be strictly positive when doing forward selection.
        It can be useful to reduce the number of features at the cost of a small
        decrease in the score.

        `tol` is enabled only when `n_features_to_select` is `"auto"`.

        .. versionadded:: 1.1

    direction : {'forward', 'backward'}, default='forward'
        Whether to perform forward selection or backward selection.

    scoring : str or callable, default=None
        A single str (see :ref:`scoring_parameter`) or a callable
        (see :ref:`scoring_callable`) to evaluate the predictions on the test set.

        NOTE that when using a custom scorer, it should return a single
        value.

        If None, the estimator's score method is used.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross validation,
        - integer, to specify the number of folds in a `(Stratified)KFold`,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if the estimator is a classifier and ``y`` is
        either binary or multiclass,
        :class:`~sklearn.model_selection.StratifiedKFold` is used. In all other
        cases, :class:`~sklearn.model_selection.KFold` is used. These splitters
        are instantiated with `shuffle=False` so the splits will be the same
        across calls.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : int, default=None
        Number of jobs to run in parallel. When evaluating a new feature to
        add or remove, the cross-validation procedure is parallel over the
        folds.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_features_to_select_ : int
        The number of features that were selected.

    support_ : ndarray of shape (n_features,), dtype=bool
        The mask of selected features.

    See Also
    --------
    GenericUnivariateSelect : Univariate feature selector with configurable
        strategy.
    RFE : Recursive feature elimination based on importance weights.
    RFECV : Recursive feature elimination based on importance weights, with
        automatic selection of the number of features.
    SelectFromModel : Feature selection based on thresholds of importance
        weights.

    Examples
    --------
    >>> from sklearn.feature_selection import SequentialFeatureSelector
    >>> from sklearn.neighbors import KNeighborsClassifier
    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> knn = KNeighborsClassifier(n_neighbors=3)
    >>> sfs = SequentialFeatureSelector(knn, n_features_to_select=3)
    >>> sfs.fit(X, y)
    SequentialFeatureSelector(estimator=KNeighborsClassifier(n_neighbors=3),
                              n_features_to_select=3)
    >>> sfs.get_support()
    array([ True, False,  True,  True])
    >>> sfs.transform(X).shape
    (150, 3)
    fitautor   r   right)closedNneitherforwardbackward	cv_object	estimatorn_features_to_selecttol	directionscoringcvn_jobs_parameter_constraints   )r'   r(   r)   r*   r+   r,   c                C   s.   || _ || _|| _|| _|| _|| _|| _d S Nr%   )selfr&   r'   r(   r)   r*   r+   r,    r1   e/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/sklearn/feature_selection/_sequential.py__init__   s   
z"SequentialFeatureSelector.__init__F)prefer_skip_nested_validationc                 K   s  t || d |  }t| |dd|jj d}|jd }| jdkr1| jdur+|d | _n(|d | _n"t	| jt
rE| j|kr@td| j| _nt	| jtrSt|| j | _| jdurf| jd	k rf| jd
krftdt| j|t| jd}t| j}tj|td}| jdks| jd
kr| jn|| j }	tj }
| jduo| jdk}t rt| dfi | t|	D ]"}| j|||||fi |\}}|r||
 | jk r n|}
d||< q| jdkr| }|| _| j | _| S )a  Learn the features to select from X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of predictors.

        y : array-like of shape (n_samples,), default=None
            Target values. This parameter may be ignored for
            unsupervised learning.

        **params : dict, default=None
            Parameters to be passed to the underlying `estimator`, `cv`
            and `scorer` objects.

            .. versionadded:: 1.6

                Only available if `enable_metadata_routing=True`,
                which can be set by using
                ``sklearn.set_config(enable_metadata_routing=True)``.
                See :ref:`Metadata Routing User Guide <metadata_routing>` for
                more details.

        Returns
        -------
        self : object
            Returns the instance itself.
        r   cscr   )accept_sparseensure_min_featuresensure_all_finiter   r   Nz*n_features_to_select must be < n_features.r   r"   z:tol must be strictly positive when doing forward selection
classifier)shapedtypeTr#   )r   __sklearn_tags__r   
input_tags	allow_nanr;   r'   r(   n_features_to_select_
isinstancer   
ValueErrorr   intr)   r   r+   r	   r&   r   npzerosboolinfr   r   range_get_best_new_feature_scoresupport_sum)r0   Xyparamstags
n_featuresr+   cloned_estimatorcurrent_maskn_iterations	old_scoreis_auto_select_new_feature_idx	new_scorer1   r1   r2   r      sd   "









zSequentialFeatureSelector.fitc              
      s   t | }i  |D ]+}| }	d|	|< | jdkr|	 }	|d d |	f }
t||
||| j| j|d  |< q
t  fddd}| | fS )NTr#   )r+   r*   r,   rN   c                    s    |  S r/   r1   )feature_idxscoresr1   r2   <lambda>B  s    zGSequentialFeatureSelector._get_best_new_feature_score.<locals>.<lambda>)key)	rD   flatnonzerocopyr)   r   r*   r,   meanmax)r0   r&   rL   rM   r+   rR   rN   candidate_feature_indicesrY   candidate_maskX_newrW   r1   rZ   r2   rI   +  s*   
	z5SequentialFeatureSelector._get_best_new_feature_scorec                 C   s   t |  | jS r/   )r   rJ   )r0   r1   r1   r2   _get_support_maskE  s   z+SequentialFeatureSelector._get_support_maskc                    s2   t   }t| jjj|j_t| jjj|j_|S r/   )superr=   r   r&   r>   r?   sparse)r0   rO   	__class__r1   r2   r=   I  s   
z*SequentialFeatureSelector.__sklearn_tags__c                 C   s~   t | jjd}|j| jt jdddd |jt| jt| jdt jdddd |jt	| j| j
dt jdd	dd
 |S )aj  Get metadata routing of this object.

        Please check :ref:`User Guide <metadata_routing>` on how the routing
        mechanism works.

        .. versionadded:: 1.6

        Returns
        -------
        routing : MetadataRouter
            A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
            routing information.
        )ownerr   )callercallee)r&   method_mappingr9   split)splitterrm   )r*   score)scorerrm   )r   ri   __name__addr&   r   r   r+   r	   r
   r*   )r0   routerr1   r1   r2   get_metadata_routingO  s   z.SequentialFeatureSelector.get_metadata_routingr/   )rr   
__module____qualname____doc__r   r   r   r   r   r   setr   callabler-   dict__annotations__r3   r   r   rI   re   r=   ru   __classcell__r1   r1   rh   r2   r      s:   
  
dr   )%rx   numbersr   r   numpyrD   baser   r   r   r   r	   metricsr
   r   model_selectionr   r   utils._metadata_requestsr   r   r   r   r   utils._param_validationr   r   r   r   utils._tagsr   utils.validationr   r   _baser   r   r1   r1   r1   r2   <module>   s    