o
    ?Hh/                     @   s   d Z ddlZddlmZmZ ddlZddlmZ ddl	m
Z
mZ ddlmZ ddlmZ dd	lmZmZ dd
lmZ ddlmZmZmZ ddlmZ ddlmZ g dZeedZG dd de
ZdS )z5
Kernel Density Estimation
-------------------------
    N)IntegralReal)gammainc   )BaseEstimator_fit_contextVALID_METRICS)check_random_state)Interval
StrOptions)	row_norms)_check_sample_weightcheck_is_fittedvalidate_data   )BallTree)KDTree)gaussiantophatepanechnikovexponentiallinearcosine)	ball_treekd_treec                   @   s  e Zd ZU dZeeddddeddhgeee	 dhB geee
geeejd	d
 e	 D  geeddddgeeddddgdgeeddddgdegd	Zeed< dddddddddd	ddZdd Zeddd#ddZdd Zd$dd Zd%d!d"ZdS )&KernelDensitya  Kernel Density Estimation.

    Read more in the :ref:`User Guide <kernel_density>`.

    Parameters
    ----------
    bandwidth : float or {"scott", "silverman"}, default=1.0
        The bandwidth of the kernel. If bandwidth is a float, it defines the
        bandwidth of the kernel. If bandwidth is a string, one of the estimation
        methods is implemented.

    algorithm : {'kd_tree', 'ball_tree', 'auto'}, default='auto'
        The tree algorithm to use.

    kernel : {'gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear',                  'cosine'}, default='gaussian'
        The kernel to use.

    metric : str, default='euclidean'
        Metric to use for distance computation. See the
        documentation of `scipy.spatial.distance
        <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
        the metrics listed in
        :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
        values.

        Not all metrics are valid with all algorithms: refer to the
        documentation of :class:`BallTree` and :class:`KDTree`. Note that the
        normalization of the density output is correct only for the Euclidean
        distance metric.

    atol : float, default=0
        The desired absolute tolerance of the result.  A larger tolerance will
        generally lead to faster execution.

    rtol : float, default=0
        The desired relative tolerance of the result.  A larger tolerance will
        generally lead to faster execution.

    breadth_first : bool, default=True
        If true (default), use a breadth-first approach to the problem.
        Otherwise use a depth-first approach.

    leaf_size : int, default=40
        Specify the leaf size of the underlying tree.  See :class:`BallTree`
        or :class:`KDTree` for details.

    metric_params : dict, default=None
        Additional parameters to be passed to the tree for use with the
        metric.  For more information, see the documentation of
        :class:`BallTree` or :class:`KDTree`.

    Attributes
    ----------
    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    tree_ : ``BinaryTree`` instance
        The tree algorithm for fast generalized N-point problems.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

    bandwidth_ : float
        Value of the bandwidth, given directly by the bandwidth parameter or
        estimated using the 'scott' or 'silverman' method.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.neighbors.KDTree : K-dimensional tree for fast generalized N-point
        problems.
    sklearn.neighbors.BallTree : Ball tree for fast generalized N-point
        problems.

    Examples
    --------
    Compute a gaussian kernel density estimate with a fixed bandwidth.

    >>> from sklearn.neighbors import KernelDensity
    >>> import numpy as np
    >>> rng = np.random.RandomState(42)
    >>> X = rng.random_sample((100, 3))
    >>> kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(X)
    >>> log_density = kde.score_samples(X[:3])
    >>> log_density
    array([-1.52955942, -1.51462041, -1.60244657])
    r   Nneither)closedscott	silvermanautoc                 C   s   g | ]}t | qS  r   ).0algr"   r"   V/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/sklearn/neighbors/_kde.py
<listcomp>   s    zKernelDensity.<listcomp>leftbooleanr   )		bandwidth	algorithmkernelmetricatolrtolbreadth_first	leaf_sizemetric_params_parameter_constraints      ?r   	euclideanT(   c       	   
      C   s:   || _ || _|| _|| _|| _|| _|| _|| _|	| _d S N)	r*   r)   r+   r,   r-   r.   r/   r0   r1   )
selfr)   r*   r+   r,   r-   r.   r/   r0   r1   r"   r"   r%   __init__   s   
zKernelDensity.__init__c                 C   sN   |dkr|t jv rdS |tjv rdS d S |t| jvr%tdt| ||S )Nr!   r   r   zinvalid metric for {0}: '{1}')r   valid_metricsr   	TREE_DICT
ValueErrorformat)r7   r*   r,   r"   r"   r%   _choose_algorithm   s   

zKernelDensity._choose_algorithmF)prefer_skip_nested_validationc                 C   s   |  | j| j}t| jtrA| jdkr#|jd d|jd d   | _n"| jdkr@|jd |jd d  d d|jd d   | _n| j| _t| |dt	j
d	}|d
ur[t||t	j
dd}| j}|d
u rdi }t| |f| j| j|d|| _| S )a  Fit the Kernel Density model on the data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        sample_weight : array-like of shape (n_samples,), default=None
            List of sample weights attached to the data X.

            .. versionadded:: 0.20

        Returns
        -------
        self : object
            Returns the instance itself.
        r   r   r      r    r   C)orderdtypeNT)rC   ensure_non_negative)r,   r0   sample_weight)r=   r*   r,   
isinstancer)   strshape
bandwidth_r   npfloat64r   r1   r:   r0   tree_)r7   XyrE   r*   kwargsr"   r"   r%   fit   s8   
 

zKernelDensity.fitc              	   C   s~   t |  t| |dtjdd}| jjdu r| jjjd }n| jj}| j	| }| jj
|| j| j|| j| jdd}|t|8 }|S )a  Compute the log-likelihood of each sample under the model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            An array of points to query.  Last dimension should match dimension
            of training data (n_features).

        Returns
        -------
        density : ndarray of shape (n_samples,)
            Log-likelihood of each sample in `X`. These are normalized to be
            probability densities, so values will be low for high-dimensional
            data.
        rA   F)rB   rC   resetNr   T)hr+   r-   r.   r/   
return_log)r   r   rJ   rK   rL   rE   datarH   
sum_weightr-   kernel_densityrI   r+   r.   r/   log)r7   rM   Natol_Nlog_densityr"   r"   r%   score_samples   s"   
	zKernelDensity.score_samplesc                 C   s   t | |S )a}  Compute the total log-likelihood under the model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        Returns
        -------
        logprob : float
            Total log-likelihood of the data in X. This is normalized to be a
            probability density, so the value will be low for high-dimensional
            data.
        )rJ   sumr[   )r7   rM   rN   r"   r"   r%   score  s   zKernelDensity.scorec                 C   s,  t |  | jdvrt t| jj}t|}|jdd|d}| jj	du r1||j
d  tj}ntt| jj	}|d }t||| }| jdkrXt||| | jS | jdkr|j
d }	|j||	fd}
t|
d	d
}td|	 d| d|	  | j t| }|| |
|ddtjf   S dS )a  Generate random samples from the model.

        Currently, this is implemented only for gaussian and tophat kernels.

        Parameters
        ----------
        n_samples : int, default=1
            Number of samples to generate.

        random_state : int, RandomState instance or None, default=None
            Determines random number generation used to generate
            random samples. Pass an int for reproducible results
            across multiple function calls.
            See :term:`Glossary <random_state>`.

        Returns
        -------
        X : array-like of shape (n_samples, n_features)
            List of samples.
        )r   r   r   r   )sizeNr?   r   r   T)squaredg      ?r3   )r   r+   NotImplementedErrorrJ   asarrayrL   rT   r
   uniformrE   rH   astypeint64cumsumsearchsorted
atleast_2dnormalrI   r   r   sqrtnewaxis)r7   	n_samplesrandom_staterT   rnguicumsum_weightrU   dimrM   s_sq
correctionr"   r"   r%   sample4  s2   



zKernelDensity.sample)NNr6   )r   N)__name__
__module____qualname____doc__r   r   r   setr:   keysVALID_KERNELS	itertoolschainr   dictr2   __annotations__r8   r=   r   rP   r[   r]   rt   r"   r"   r"   r%   r   &   sF   
 _
6
&r   ) rx   r|   numbersr   r   numpyrJ   scipy.specialr   baser   r   neighbors._baser	   utilsr
   utils._param_validationr   r   utils.extmathr   utils.validationr   r   r   
_ball_treer   _kd_treer   r{   r:   r   r"   r"   r"   r%   <module>   s     
	