o
    3Ihr                     @  s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZmZmZmZmZmZ d dlmZmZmZ d dlmZ d d	lmZmZmZmZ d d
lmZ d dl m!Z! d dl"m#Z# d dl$m%Z%m&Z& d dl'm(Z( d dl)m*Z* d dl+m,Z,m-Z-m.Z.m/Z/m0Z0 d dl1m2Z2 d dl3m4Z4m5Z5 d dl6m7Z7 G dd deZ8G dd de8Z9G dd deZ:G dd de8e:dZ;dd Z<G dd  d eZ=G d!d" d"eZ>ed#d$ Z?d%S )&    )annotations)product)Add)cacheit)Expr)DefinedFunctionArgumentIndexError
expand_log
expand_mulFunctionClass	PoleErrorexpand_multinomialexpand_complex)	fuzzy_and	fuzzy_notfuzzy_or)Mul)IntegerRationalpiI)global_parameters)Pow)S)WildDummy)sympify)	factorial)arg
unpolarifyimreAbs)sqrt)multiplicityperfect_power)	factorintc                   @  s   e Zd ZdZejfZedd ZdddZ	dd Z
ed	d
 Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd ZdS )ExpBaseTc                 C  s   | j jS N)expkindself r-   f/home/air/sanwanet/gpt-api/venv/lib/python3.10/site-packages/sympy/functions/elementary/exponential.pyr*   (   s   zExpBase.kind   c                 C     t S )z=
        Returns the inverse function of ``exp(x)``.
        logr,   argindexr-   r-   r.   inverse,      zExpBase.inversec                 C  sP   | j s| tjfS | j}|j}|s| js| }|r#tj| | fS | tjfS )a-  
        Returns this with a positive exponent as a 2-tuple (a fraction).

        Examples
        ========

        >>> from sympy import exp
        >>> from sympy.abc import x
        >>> exp(-x).as_numer_denom()
        (1, exp(x))
        >>> exp(x).as_numer_denom()
        (exp(x), 1)
        )is_commutativer   Oner)   is_negativecould_extract_minus_signfunc)r,   r)   neg_expr-   r-   r.   as_numer_denom2   s   

zExpBase.as_numer_denomc                 C  s
   | j d S )z7
        Returns the exponent of the function.
        r   )argsr+   r-   r-   r.   r)   L   s   
zExpBase.expc                 C  s   |  dt| j fS )z7
        Returns the 2-tuple (base, exponent).
        r/   )r;   r   r>   r+   r-   r-   r.   as_base_expS   s   zExpBase.as_base_expc                 C     |  | j S r(   )r;   r)   adjointr+   r-   r-   r.   _eval_adjointY      zExpBase._eval_adjointc                 C  r@   r(   )r;   r)   	conjugater+   r-   r-   r.   _eval_conjugate\   rC   zExpBase._eval_conjugatec                 C  r@   r(   )r;   r)   	transposer+   r-   r-   r.   _eval_transpose_   rC   zExpBase._eval_transposec                 C  s.   | j }|jr|jrdS |jrdS |jrdS d S NTF)r)   is_infiniteis_extended_negativeis_extended_positive	is_finiter,   r   r-   r-   r.   _eval_is_finiteb   s   zExpBase._eval_is_finitec                 C  sJ   | j | j }|j | j kr"|jj}|rdS |jjrt|r dS d S d S |jS rH   )r;   r>   r)   is_zerois_rationalr   )r,   szr-   r-   r.   _eval_is_rationall   s   zExpBase._eval_is_rationalc                 C  s   | j tju S r(   )r)   r   NegativeInfinityr+   r-   r-   r.   _eval_is_zerow      zExpBase._eval_is_zeroc                 C  s"   |   \}}tt||dd|S )z;exp(arg)**e -> exp(arg*e) if assumptions allow it.
        Fevaluate)r?   r   _eval_power)r,   otherber-   r-   r.   rY   z   s   zExpBase._eval_powerc                   s|   ddl m} ddlm}  jd }|jr$|jr$t fdd|jD S t	||r9|jr9| 
|jg|jR  S  
|S )Nr   )Product)Sumc                 3  s    | ]}  |V  qd S r(   )r;   ).0xr+   r-   r.   	<genexpr>       z1ExpBase._eval_expand_power_exp.<locals>.<genexpr>)sympy.concrete.productsr]   sympy.concrete.summationsr^   r>   is_Addr7   r   fromiter
isinstancer;   functionlimits)r,   hintsr]   r^   r   r-   r+   r.   _eval_expand_power_exp   s   

zExpBase._eval_expand_power_expNr/   )__name__
__module____qualname__
unbranchedr   ComplexInfinity_singularitiespropertyr*   r5   r=   r)   r?   rB   rE   rG   rN   rS   rU   rY   rk   r-   r-   r-   r.   r'   #   s$    



r'   c                   @  s@   e Zd ZdZdZdZdd Zdd Zdd	 Zd
d Z	dd Z
dS )	exp_polara<  
    Represent a *polar number* (see g-function Sphinx documentation).

    Explanation
    ===========

    ``exp_polar`` represents the function
    `Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
    `z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
    the main functions to construct polar numbers.

    Examples
    ========

    >>> from sympy import exp_polar, pi, I, exp

    The main difference is that polar numbers do not "wrap around" at `2 \pi`:

    >>> exp(2*pi*I)
    1
    >>> exp_polar(2*pi*I)
    exp_polar(2*I*pi)

    apart from that they behave mostly like classical complex numbers:

    >>> exp_polar(2)*exp_polar(3)
    exp_polar(5)

    See Also
    ========

    sympy.simplify.powsimp.powsimp
    polar_lift
    periodic_argument
    principal_branch
    TFc                 C  s   t t| jd S Nr   )r)   r!   r>   r+   r-   r-   r.   	_eval_Abs   s   zexp_polar._eval_Absc                 C  sx   t | jd }z|t kp|tk}W n ty   d}Y nw |r"| S t| jd |}|dkr:t |dk r:t|S |S )z. Careful! any evalf of polar numbers is flaky r   T)r    r>   r   	TypeErrorr)   _eval_evalfr!   )r,   precibadresr-   r-   r.   rx      s   zexp_polar._eval_evalfc                 C  s   |  | jd | S ru   )r;   r>   )r,   rZ   r-   r-   r.   rY      s   zexp_polar._eval_powerc                 C  s   | j d jrdS d S )Nr   T)r>   is_extended_realr+   r-   r-   r.   _eval_is_extended_real   s   z exp_polar._eval_is_extended_realc                 C  s"   | j d dkr| tjfS t| S ru   )r>   r   r8   r'   r?   r+   r-   r-   r.   r?      s   

zexp_polar.as_base_expN)rm   rn   ro   __doc__is_polaris_comparablerv   rx   rY   r~   r?   r-   r-   r-   r.   rt      s    %rt   c                   @  s   e Zd Zdd ZdS )ExpMetac                 C  s&   t |jjv rdS t|to|jtju S )NT)r)   	__class____mro__rg   r   baser   Exp1)clsinstancer-   r-   r.   __instancecheck__   s   zExpMeta.__instancecheck__N)rm   rn   ro   r   r-   r-   r-   r.   r      s    r   c                      s   e Zd ZdZd+ddZdd Zedd Zed	d
 Z	e
edd Zd,ddZ fddZdd Zdd Zdd Zdd Zd-ddZdd Zdd  Zd!d" Zd#d$ Zd%d& Zd'd( Zd)d* Z  ZS ).r)   a9  
    The exponential function, :math:`e^x`.

    Examples
    ========

    >>> from sympy import exp, I, pi
    >>> from sympy.abc import x
    >>> exp(x)
    exp(x)
    >>> exp(x).diff(x)
    exp(x)
    >>> exp(I*pi)
    -1

    Parameters
    ==========

    arg : Expr

    See Also
    ========

    log
    r/   c                 C  s   |dkr| S t | |)z@
        Returns the first derivative of this function.
        r/   )r   r3   r-   r-   r.   fdiff   s   
z	exp.fdiffc                 C  s   ddl m}m} | jd }|jr^ttj }||| fv rtjS |	t
t }|r`||d| rb|||r;tjS |||rEtjS |||tj rRt S |||tj rdtS d S d S d S d S )Nr   )askQ   )sympy.assumptionsr   r   r>   is_Mulr   r   InfinityNaNas_coefficientr   integerevenr8   oddNegativeOneHalf)r,   assumptionsr   r   r   Ioocoeffr-   r-   r.   _eval_refine   s*   

zexp._eval_refinec                 C  sd  ddl m} ddlm} ddlm} ddlm} t||r!|	 S t
jr*ttj|S |jrU|tju r5tjS |jr;tjS |tju rCtjS |tju rKtjS |tju rStjS nT|tju r]tjS t|trg|jd S t||rw|t	|jt	|jS t||r|| S |jrO|tt }|rd| j r|j!rtjS |j"rtj#S |tj$ j!rt S |tj$ j"rtS n|j%r|d }|dkr|d8 }||kr| |t t S |& \}}|tjtjfv r|j'r|tju r| }t(|jr|tjurtjS t(|j)rt*|tjurtjS t(|j+rtjS d S |gd }	}
t,-|D ](}||}t|tr6|
d u r3|jd }
q d S |j.rA|	/| q d S |
rM|
t,|	  S d S |j0rg }g }d}|jD ]:}|tju rk|/| q\| |}t|| r|jd |kr|/|jd  d	}q\|/| q\|/| q\|s|rt,| | t1| dd
 S |jrtjS d S )Nr   AccumBounds)
MatrixBaseSetExpr
logcombiner   r/   FTrW   )2sympy.calculusr   sympy.matrices.matrixbaser   sympy.sets.setexprr   sympy.simplify.simplifyr   rg   r)   r   
exp_is_powr   r   r   	is_Numberr   rO   r8   r   rT   Zerorq   r2   r>   minmax
_eval_funcr   r   r   r   
is_integeris_evenis_oddr   r   is_Rationalas_coeff_Mul	is_numberr!   is_positiver    r9   r   	make_argsr   appendre   r   )r   r   r   r   r   r   r   ncoefftermscoeffslog_termtermterm_outadd
argchangedanewar-   r-   r.   eval  s   















zexp.evalc                 C  s   t jS )z?
        Returns the base of the exponential function.
        )r   r   r+   r-   r-   r.   r   }  s   zexp.basec                 G  sT   | dk rt jS | dkrt jS t|}|r"|d }|dur"|| |  S ||  t|  S )zJ
        Calculates the next term in the Taylor series expansion.
        r   N)r   r   r8   r   r   )nr`   previous_termspr-   r-   r.   taylor_term  s   zexp.taylor_termTc                 K  st   ddl m}m} | jd  \}}|r%|j|fi |}|j|fi |}||||}}t|| t|| fS )aJ  
        Returns this function as a 2-tuple representing a complex number.

        Examples
        ========

        >>> from sympy import exp, I
        >>> from sympy.abc import x
        >>> exp(x).as_real_imag()
        (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
        >>> exp(1).as_real_imag()
        (E, 0)
        >>> exp(I).as_real_imag()
        (cos(1), sin(1))
        >>> exp(1+I).as_real_imag()
        (E*cos(1), E*sin(1))

        See Also
        ========

        sympy.functions.elementary.complexes.re
        sympy.functions.elementary.complexes.im
        r   )cossin)(sympy.functions.elementary.trigonometricr   r   r>   as_real_imagexpandr)   )r,   deeprj   r   r   r!   r    r-   r-   r.   r     s   zexp.as_real_imagc                   s   |j rt|jt|j }n
|tju r|jrt}t|ts"|tju r1dd }t	|| |||S |tu rA|jsA|| j
|| S t 	||S )Nc                 S  s&   | j st| trt|  ddiS | S )NrX   F)is_Powrg   r)   r   r?   )r   r-   r-   r.   <lambda>  s
   z exp._eval_subs.<locals>.<lambda>)r   r)   r2   r   r   r   is_Functionrg   r   
_eval_subs_subssuper)r,   oldnewfr   r-   r.   r     s   zexp._eval_subsc                 C  sB   | j d jrdS | j d jrtd t | j d  t }|jS d S )Nr   Tr   )r>   r}   is_imaginaryr   r   r   r   r,   arg2r-   r-   r.   r~     s   zexp._eval_is_extended_realc                 C  s   dd }t || jd S )Nc                 s  s    | j V  | jV  d S r(   )
is_complexrJ   r   r-   r-   r.   complex_extended_negative  s   z7exp._eval_is_complex.<locals>.complex_extended_negativer   )r   r>   )r,   r   r-   r-   r.   _eval_is_complex  s   zexp._eval_is_complexc                 C  sD   | j t t jr
dS t| j jr| j jrdS | j t jr dS d S d S rH   )r)   r   r   rP   r   rO   is_algebraicr+   r-   r-   r.   _eval_is_algebraic  s   zexp._eval_is_algebraicc                 C  s>   | j jr| jd tjuS | j jrt | jd  t }|jS d S ru   )	r)   r}   r>   r   rT   r   r   r   r   r   r-   r-   r.   _eval_is_extended_positive  s   zexp._eval_is_extended_positiver   c              	     s  ddl m  ddlm} ddlm} ddlm} ddlm	} | j
}	|	j|||d}
|
jr0d|
 S ||
 |d}|tju rD||| |S |tju rK| S |jrTtd	|  t fd
d|jD rb| S td}|}z||	j||d| }W n ttfy   d}Y nw |r|dkr||| }t
|||}t
||||
|  }|d ur|t|ini }||| kr|S |r|dkr|||
| | |||d |   7 }n|||
| | |7 }| }||ddd}dd }td|gd}|tj| t tj| }|S )Nr   signceiling)limitOrderpowsimpr   logxr/   Cannot expand %s around 0c                 3  s    | ]}t | V  qd S r(   )rg   )r_   r   r   r-   r.   ra     rb   z$exp._eval_nseries.<locals>.<genexpr>tr   Tr)   r   combinec                 S  s   | j o| jdv S )N)         )r   q)r`   r-   r-   r.   r     s    z#exp._eval_nseries.<locals>.<lambda>w)
properties)!$sympy.functions.elementary.complexesr   #sympy.functions.elementary.integersr   sympy.series.limitsr   sympy.series.orderr   sympy.simplify.powsimpr   r)   _eval_nseriesis_OrderremoveOr   rT   r   rI   r   anyr>   r   as_leading_termgetnNotImplementedError_taylorsubsr2   r   r   replacer   r   )r,   r`   r   r   cdirr   r   r   r   r   
arg_seriesarg0r   ntermscf
exp_seriesrrep	simpleratr   r-   r   r.   r     sR   

(zexp._eval_nseriesc                 C  sN   g }d }t |D ]}| || jd |}|j||d}||  qt| S )Nr   r   )ranger   r>   nseriesr   r   r   )r,   r`   r   lgrz   r-   r-   r.   r    s   zexp._taylorc                 C  s   ddl m} | jd  j||d}||d}|tju r tjS t||r5t	|tj
k r1t| S t|S |tju r@||d}|jdu rIt|S td|  )Nr   r   r   Fr   )sympy.calculus.utilr   r>   cancelr   r  r   r   rg   r!   r   r)   r   rI   r   )r,   r`   r   r  r   r   r  r-   r-   r.   _eval_as_leading_term  s   




zexp._eval_as_leading_termc                 K  s0   ddl m} |t| td  t|t|   S )Nr   )r   r   )r   r   r   r   )r,   r   kwargsr   r-   r-   r.   _eval_rewrite_as_sin.     $zexp._eval_rewrite_as_sinc                 K  s0   ddl m} |t| t|t| td    S )Nr   )r   r   )r   r   r   r   )r,   r   r  r   r-   r-   r.   _eval_rewrite_as_cos2  r  zexp._eval_rewrite_as_cosc                 K  s,   ddl m} d||d  d||d   S )Nr   )tanhr/   r   )%sympy.functions.elementary.hyperbolicr  )r,   r   r  r  r-   r-   r.   _eval_rewrite_as_tanh6  s    zexp._eval_rewrite_as_tanhc                 K  s|   ddl m}m} |jr4|tt }|r6|jr8|t| |t| }}t||s:t||s<|t|  S d S d S d S d S d S )Nr   )r   r   )	r   r   r   r   r   r   r   r   rg   )r,   r   r  r   r   r   cosinesiner-   r-   r.   _eval_rewrite_as_sqrt:  s   
zexp._eval_rewrite_as_sqrtc                 K  s@   |j rdd |jD }|rt|d jd ||d S d S d S )Nc                 S  s(   g | ]}t |trt|jd kr|qS rl   )rg   r2   lenr>   )r_   r   r-   r-   r.   
<listcomp>E  s   ( z,exp._eval_rewrite_as_Pow.<locals>.<listcomp>r   )r   r>   r   r   )r,   r   r  logsr-   r-   r.   _eval_rewrite_as_PowC  s   zexp._eval_rewrite_as_Powrl   Tr   )rm   rn   ro   r   r   r   classmethodr   rs   r   staticmethodr   r   r   r   r~   r   r   r   r   r  r  r  r  r  r   r$  __classcell__r-   r-   r   r.   r)      s2    
	
i

 	
/		r)   )	metaclassc                 C  sN   | j tdd\}}|dkr|jr||fS |t}|r%|jr%|jr%||fS dS )a  
    Try to match expr with $a + Ib$ for real $a$ and $b$.

    ``match_real_imag`` returns a tuple containing the real and imaginary
    parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
    to :func:`~.re`, :func:`~.im``, and ``as_real_imag()``, this helper will not force things
    by returning expressions themselves containing ``re()`` or ``im()`` and it
    does not expand its argument either.

    Tas_Addr   )NN)as_independentr   is_realr   )exprr_i_r-   r-   r.   match_real_imagJ  s   
r2  c                   @  s   e Zd ZU dZded< ejejfZd*ddZ	d*ddZ
ed+d
dZeedd Zd,ddZdd Zd,ddZdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd-d&d'Zd(d) Zd	S ).r2   a  
    The natural logarithm function `\ln(x)` or `\log(x)`.

    Explanation
    ===========

    Logarithms are taken with the natural base, `e`. To get
    a logarithm of a different base ``b``, use ``log(x, b)``,
    which is essentially short-hand for ``log(x)/log(b)``.

    ``log`` represents the principal branch of the natural
    logarithm. As such it has a branch cut along the negative
    real axis and returns values having a complex argument in
    `(-\pi, \pi]`.

    Examples
    ========

    >>> from sympy import log, sqrt, S, I
    >>> log(8, 2)
    3
    >>> log(S(8)/3, 2)
    -log(3)/log(2) + 3
    >>> log(-1 + I*sqrt(3))
    log(2) + 2*I*pi/3

    See Also
    ========

    exp

    ztuple[Expr]r>   r/   c                 C  s    |dkrd| j d  S t| |)z?
        Returns the first derivative of the function.
        r/   r   )r>   r   r3   r-   r-   r.   r     s   
z	log.fdiffc                 C  r0   )zC
        Returns `e^x`, the inverse function of `\log(x)`.
        )r)   r3   r-   r-   r.   r5     r6   zlog.inverseNc                 C  s  ddl m} ddlm} t|}|d ur`t|}|dkr&|dkr#tjS tjS zt||}|r=|t	|||  t	|  W S t	|t	| W S  t
yN   Y nw |tjur\| || | S | |S |jr|jritjS |tju rqtjS |tju rytjS |tju rtjS |tju rtjS |jr|jdkr| |j S |jr|jtju r|jjr|jS t|tr|jjr|jS t|tr|jjrt|j\}}|r|jr|dt ; }|tkr|dt 8 }|t|t dd S n<t|t rt!|jS t||r|j"j#r|t	|j"t	|j$S |j"jr|tjt	|j$S tjS t||r|%| S |jrB|j&r0tt | |  S |tju r9tjS |tju rBtjS |jrItjS |j's|(t}|d ur|tju r`tjS |tju ritjS |jr|j)r|tt tj* | | S t t tj* | |  S |jrV|j+rX|j,tdd\}}	|j&r|d	9 }|	d	9 }	t|	dd}	|	j,td
d\}}|(t}|j-rZ|r\|j-r^|j-r`|jr|j#rtt tj* | ||  S |j&rt t tj* | ||   S d S ddl.m/}
 || 0 }| 0 }t1 }||v r.|
|t2|	 }|j#r"| |t||   S | |t|| t   S ||v rb|
|t2|	 }|j#rJ| |t||    S | |tt||    S d S d S d S d S d S d S d S )Nr   r   r   r/   r   Fr   r+  r   T)ratsimp)3r   r   r   r   r   r   r   rq   r$   r2   
ValueErrorr   r   rO   r8   r   r   rT   r   r   r   r   r   r)   r}   rg   r   r2  r   r   r
   r   rt   r   r   r   r   r   r9   re   r   is_nonnegativer   r   r-  r.  sympy.simplifyr4  r  _log_atan_tabler"   )r   r   r   r   r   r   r0  r1  r   arg_r4  r   t1
atan_tablemodulusr-   r-   r.   r     s   

















	zlog.evalc                 G  s   ddl m} | dk rtjS t|}| dkr|S |r1|d }|dur1||  | | | d  dddS dd	| d	   || d   | d  S )
zV
        Returns the next term in the Taylor series expansion of `\log(1+x)`.
        r   r   r   Nr/   Tr)   r   r   )r   r   r   r   r   )r   r`   r   r   r   r-   r-   r.   r     s    $zlog.taylor_termTc                 K  s^  ddl m}m} |dd}|dd}t| jdkr&t| j| j ||dS | jd }|jrct	|}d }	d}
|durC|\}}
| |}	|rZt
|}|| vrZtd	d
 | D }	|	d urb|
|	 S n|jrpt|jt|j S |jrg }g }|jD ]C}|s|js|jr| |}t|tr|| |jdi | qz|| qz|jr| | }|| |tj qz|| qzt| tt|  S |jst|tr|s|jjr|j js|jd jr|jd j!s|j jr|j }|j}| |}t|tr	t"||jdi | S t"|| S nt||r*|s|j#jr*|t|j#g|j$R  S | |S )Nr   )r^   r]   forceFfactorr   )r   r=  r/   c                 s  s     | ]\}}|t | V  qd S r(   r1   )r_   valr   r-   r-   r.   ra   7  s    z'log._eval_expand_log.<locals>.<genexpr>r-   )%sympy.concreter^   r]   getr!  r>   r	   r;   
is_Integerr%   r&   keyssumitemsr   r2   r   r   r   r   r   rg   r   _eval_expand_logr9   r   r   r   r   r   r)   r}   r   is_nonpositiver   rh   ri   )r,   r   rj   r^   r]   r=  r>  r   r   logargr   r/  nonposr`   r   r[   r\   r-   r-   r.   rF  $  sp   







	
zlog._eval_expand_logc                 K  s   ddl m}m}m} t| jdkr|| j| j fi |S | || jd fi |}|d r3||}||dd}t|| g|d dS )	Nr   )r	   simplifyinversecombiner   r5   Tr3  measure)key)r   r	   rJ  rK  r!  r>   r;   r   )r,   r  r	   rJ  rK  r/  r-   r-   r.   _eval_simplify]  s   zlog._eval_simplifyc                 K  s   | j d }|r| j d j|fi |}t|}||kr | tjfS t|}|ddr;d|d< t|j|fi ||fS t||fS )a  
        Returns this function as a complex coordinate.

        Examples
        ========

        >>> from sympy import I, log
        >>> from sympy.abc import x
        >>> log(x).as_real_imag()
        (log(Abs(x)), arg(x))
        >>> log(I).as_real_imag()
        (0, pi/2)
        >>> log(1 + I).as_real_imag()
        (log(sqrt(2)), pi/4)
        >>> log(I*x).as_real_imag()
        (log(Abs(x)), arg(I*x))

        r   r2   Fcomplex)r>   r   r"   r   r   r   rA  r2   )r,   r   rj   sargsarg_abssarg_argr-   r-   r.   r   h  s   

zlog.as_real_imagc                 C  s^   | j | j }|j | j kr,| jd d jrdS |jd jr(t| jd d jr*dS d S d S |jS Nr   r/   TF)r;   r>   rO   rP   r   r,   rQ   r-   r-   r.   rS     s    zlog._eval_is_rationalc                 C  s^   | j | j }|j | j kr,| jd d jrdS t| jd d jr(| jd jr*dS d S d S |jS rS  )r;   r>   rO   r   r   rT  r-   r-   r.   r     s   zlog._eval_is_algebraicc                 C     | j d jS ru   r>   rK   r+   r-   r-   r.   r~     rV   zlog._eval_is_extended_realc                 C  s   | j d }t|jt|jgS ru   )r>   r   r   r   rO   )r,   rR   r-   r-   r.   r     s   
zlog._eval_is_complexc                 C  s   | j d }|jr
dS |jS Nr   F)r>   rO   rL   rM   r-   r-   r.   rN     s   
zlog._eval_is_finitec                 C     | j d d jS Nr   r/   rV  r+   r-   r-   r.   r     rC   zlog._eval_is_extended_positivec                 C  rX  rY  )r>   rO   r+   r-   r-   r.   rU     rC   zlog._eval_is_zeroc                 C  rX  rY  )r>   is_extended_nonnegativer+   r-   r-   r.   _eval_is_extended_nonnegative  rC   z!log._eval_is_extended_nonnegativer   c           $        s  ddl m} ddlm} ddlm} | jd |kr#|d u r!t|S |S | jd }|ddd}	|dkr4d}||||	 }
t	d	t	d
}}|

||	|  }|d ur|| || }}|dkr||	s||	s|d u rs|t| n|| }|t||t|  7 }|S dd }z|
j|	|dd\}}W nL tttfy   |
j|	 |dd}|jr d7  |
j|	 |dd}|jsz| j|	dd\}}W n ty   | j|	ddtj}}Y nw Y nw |
||	|   d  j|	 |dd}|tr||}t||r|  |||	\}}|d u rt|n|}|js{t||t|  ||  }|}dddddddddd	}| jdi |}| s]| r]|| t| jdi |}n||t|jdi |}||krr|S |||  | S  fdd}i }t| D ]}|||	\}}||tj| ||< qtj }i }|}||  k rtj!|  | } |D ]}!||!tj| ||!   ||!< q|||}|tj 7 }||  k st||t|  ||  }|D ]}!|||!  |	|!  7 }q|j"rAt#|
dkrAddl$m%}" t&|
'|	D ]\}#}|j(r!|#dkr# nq|#dk rA|)|	\} }|dt* t+ |"t#|  d 7 }||	|| }|||  | S )Nr   r   r   )r   r   Tpositiver/   kr  c              	   S  s   t jt j}}t| D ]/}||r7| \}}||kr6z| |W   S  ty5   | t jf Y   S w q||9 }q||fS r(   )	r   r8   r   r   r   hasr?   leadtermr5  )r   r`   r   r)   r>  r   r-   r-   r.   	coeff_exp  s   

z$log._eval_nseries.<locals>.coeff_expr   r  )r   r   r  )r  F)	r   r2   mul	power_exp
power_basemultinomialbasicr=  r>  c                   sN   i }t | |D ]\}}|| }| k r$||tj| | ||   ||< q|S r(   )r   rA  r   r   )d1d2r|   e1e2exr  r-   r.   rc    s   "zlog._eval_nseries.<locals>.mul	Heaviside   r-   ),r   r   r   r   sympy.core.symbolr   r>   r2   r  r   matchr_  r`  r5  r  r   r   r   r   r   r   r   r  r)   rg   r  r   r   r:   r   r   rA  r8   r   r9   r    'sympy.functions.special.delta_functionsrn  	enumeratelseriesr.  as_coeff_exponentr   r   )$r,   r`   r   r   r  r   r   r   r   r   rR   r^  r  r  ra  r   r[   rQ   r   _dr|   _reslogflagsr/  rc  ptermsr   co1rj  r   pkr   rl  rn  rz   r-   r  r.   r     s   
&


"
"


 zlog._eval_nseriesc                 C  s  | j d  }tddd}|dkrd}|||| }z|j||dd\}}W n ty<   |j|||d}	t|	 Y S w ||rX|||| }|dkrTt	d|  t|S |t
jkrl|t
jkrl|t
j j||dS t||t|  }
|d u r~t|n|}|
|| 7 }
|jrt|dkrdd	lm} t||D ]\}}|jr|d
kr nq|d
k r||\}}|
dt t |t| d 7 }
|
S )Nr   r   Tr\  r/   rb  r   r   rm  ro  rp  )r>   togetherr   r  r`  r5  r   r2   r_  r   r   r8   r   r9   r    rs  rn  rt  ru  r.  rv  r   r   )r,   r`   r   r  r  r   rR   cr\   r   r|   rn  rz   r   r   rw  r-   r-   r.   r  '  s>   
 zlog._eval_as_leading_termrl   r(   r%  r&  )rm   rn   ro   r   __annotations__r   r   rq   rr   r   r5   r'  r   r(  r   r   rF  rN  r   rS   r   r~   r   rN   r   rU   r[  r   r  r-   r-   r-   r.   r2   _  s0   
 !

	}
9
 

tr2   c                      sz   e Zd ZdZeejddd ejfZe	dddZ
dd	d
Zdd Zdd Zdd Zdd Zd fdd	Zdd Z  ZS )LambertWa  
    The Lambert W function $W(z)$ is defined as the inverse
    function of $w \exp(w)$ [1]_.

    Explanation
    ===========

    In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
    for any complex number $z$.  The Lambert W function is a multivalued
    function with infinitely many branches $W_k(z)$, indexed by
    $k \in \mathbb{Z}$.  Each branch gives a different solution $w$
    of the equation $z = w \exp(w)$.

    The Lambert W function has two partially real branches: the
    principal branch ($k = 0$) is real for real $z > -1/e$, and the
    $k = -1$ branch is real for $-1/e < z < 0$. All branches except
    $k = 0$ have a logarithmic singularity at $z = 0$.

    Examples
    ========

    >>> from sympy import LambertW
    >>> LambertW(1.2)
    0.635564016364870
    >>> LambertW(1.2, -1).n()
    -1.34747534407696 - 4.41624341514535*I
    >>> LambertW(-1).is_real
    False

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Lambert_W_function
    r   FrW   Nc                 C  s>  |t jkr	| |S |d u rt j}|jrf|jrt jS |t ju r!t jS |dt j kr+t jS |td d kr9td S |dtd krEtdS |t d krRtt d S |t	dt j kr^t jS |t j
u rft j
S t|jrq|jrqt jS |t ju r|t d krt t d S |dt j krt jS |dt	d krtd S d S d S )Nr   r   r/   rp  )r   r   rO   r   r8   r   r2   r   r   r)   r   r   rT   r   )r   r`   r^  r-   r-   r.   r   y  sB   






zLambertW.evalr/   c                 C  sr   | j d }t| j dkr|dkrt||dt|   S n| j d }|dkr4t|||dt||   S t| |)z?
        Return the first derivative of this function.
        r   r/   )r>   r!  r  r   )r,   r4   r`   r^  r-   r-   r.   r     s   


zLambertW.fdiffc                 C  s   | j d }t| j dkrtj}n| j d }|jr.|dtj  jr"dS |dtj  jr,dS d S |d jrO|jr@|dtj  jr@dS |jsK|dtj  j	rMdS d S t
|jr`t
|d jrb|jrddS d S d S d S rS  )r>   r!  r   r   rO   r   r   rG  r9   r6  r   r}   )r,   r`   r^  r-   r-   r.   r~     s*   


zLambertW._eval_is_extended_realc                 C  rU  ru   )r>   rL   r+   r-   r-   r.   rN     rV   zLambertW._eval_is_finitec                 C  sF   | j | j }|j | j kr t| jd jr| jd jrdS d S d S |jS rW  )r;   r>   r   rO   r   rT  r-   r-   r.   r     s   zLambertW._eval_is_algebraicc                 C  sF   t | jdkr!| jd }||d }|js| |S ||S d S )Nr/   r   )r!  r>   r  r  rO   r;   r   )r,   r`   r   r  r   r  r-   r-   r.   r    s   


zLambertW._eval_as_leading_termr   c           
        s   t | jdkrXddlm} ddlm} | jd j|||d  j||d}d}|jr-|j	}||| dkrLt
 fddtd||| D  }	t|	}	ntj}	|	||| | S t |||S )	Nr/   r   r   r   r   r   c                   s@   g | ]}t j |d   t||d   t|d    |  qS )r/   r   )r   r8   r   r   )r_   r^  r   r-   r.   r"    s    
z*LambertW._eval_nseries.<locals>.<listcomp>)r!  r>   r   r   r   r   r  r   r   r)   r   r  r   r   r   r   r   )
r,   r`   r   r   r  r   r   ltlterQ   r   r   r.   r     s    
zLambertW._eval_nseriesc                 C  s4   | j d }t| j dkr|jS t|j| j d jgS rY  )r>   r!  rO   r   )r,   r`   r-   r-   r.   rU     s   
zLambertW._eval_is_zeror(   rl   r&  )rm   rn   ro   r   r   r   r   rq   rr   r'  r   r   r~   rN   r   r  r   rU   r)  r-   r-   r   r.   r  T  s    "
#r  c                   C  sH  i t dtd dtd t ddt d  td t dt dt d  dt d  td t ddt d  ttdd t dt t dd  dt d  ttdd t dd td t dd td t dt d t t dd  td t dd ttdd t t dd t dt d  ttdd t ddt d d  td	 t d t d	 dt t dd   td	 t ddt d d  ttdd	 t dt d	 dt dt d   ttdd	 dt d td
 dt d dt d  td
 dt d ttdd
 dt d dt d  ttdd
 iS )Nr   r/   r   ro  r   r   r      
      )r#   r   r   r-   r-   r-   r.   r8    sL   (.	$
**"."r8  N)@
__future__r   	itertoolsr   sympy.core.addr   sympy.core.cacher   sympy.core.exprr   sympy.core.functionr   r   r	   r
   r   r   r   r   sympy.core.logicr   r   r   sympy.core.mulr   sympy.core.numbersr   r   r   r   sympy.core.parametersr   sympy.core.powerr   sympy.core.singletonr   rq  r   r   sympy.core.sympifyr   (sympy.functions.combinatorial.factorialsr   r   r   r   r    r!   r"   (sympy.functions.elementary.miscellaneousr#   sympy.ntheoryr$   r%   sympy.ntheory.factor_r&   r'   rt   r   r)   r2  r2   r  r8  r-   r-   r-   r.   <module>   sD    (hI  q   x 