o
    vThYb                     @   s  d dl Z d dlmZ d dlZd dlmZmZmZmZm	Z	m
Z
mZmZmZmZmZmZ d dlmZmZ ddlmZ ddlmZmZ ddlmZ dd	lmZmZ dd
lmZm Z  ddl!m"Z" ddl#m$Z$m%Z% ddl&m'Z' g dZ(e)dj*Z*e)dj*Z+ddd dd ddZ,dd Z-d1ddZ.dd Z/d2ddZ0dd Z1dd Z2dd  Z3d!d" Z4d#d$ Z5d%d& Z6d'd( Z7d)d* Z8d2d+d,Z9d2d-d.Z:d/d0 Z;dS )3    N)product)dotdiagprodlogical_notravel	transpose	conjugateabsoluteamaxsignisfinitetriu)LinAlgError	bandwidth   )norm)solveinv)svd)schurrsf2csf)expm_frechet	expm_cond)sqrtm)pick_pade_structurepade_UV_calc)_funm_loops)expmcosmsinmtanmcoshmsinhmtanhmlogmfunmsignmr   fractional_matrix_powerr   r   
khatri_raodf)ilr+   r*   FDc                 C   s8   t | } t| jdks| jd | jd krtd| S )a  
    Wraps asarray with the extra requirement that the input be a square matrix.

    The motivation is that the matfuncs module has real functions that have
    been lifted to square matrix functions.

    Parameters
    ----------
    A : array_like
        A square matrix.

    Returns
    -------
    out : ndarray
        An ndarray copy or view or other representation of A.

       r   r   z expected square array_like input)npasarraylenshape
ValueErrorA r8   W/home/air/segue/gemini/back/venv/lib/python3.10/site-packages/scipy/linalg/_matfuncs.py_asarray_square$   s   
"r:   c                 C   sV   t | r)t |r)|du rtd td dt|jj  }t j|j	d|dr)|j
}|S )a(  
    Return either B or the real part of B, depending on properties of A and B.

    The motivation is that B has been computed as a complicated function of A,
    and B may be perturbed by negligible imaginary components.
    If A is real and B is complex with small imaginary components,
    then return a real copy of B.  The assumption in that case would be that
    the imaginary components of B are numerical artifacts.

    Parameters
    ----------
    A : ndarray
        Input array whose type is to be checked as real vs. complex.
    B : ndarray
        Array to be returned, possibly without its imaginary part.
    tol : float
        Absolute tolerance.

    Returns
    -------
    out : real or complex array
        Either the input array B or only the real part of the input array B.

    N     @@g    .Ar   r           )atol)r1   	isrealobjiscomplexobjfepseps_array_precisiondtypecharallcloseimagreal)r7   Btolr8   r8   r9   _maybe_real<   s   rK   c                 C   s    t | } ddl}|jj| |S )a  
    Compute the fractional power of a matrix.

    Proceeds according to the discussion in section (6) of [1]_.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix whose fractional power to evaluate.
    t : float
        Fractional power.

    Returns
    -------
    X : (N, N) array_like
        The fractional power of the matrix.

    References
    ----------
    .. [1] Nicholas J. Higham and Lijing lin (2011)
           "A Schur-Pade Algorithm for Fractional Powers of a Matrix."
           SIAM Journal on Matrix Analysis and Applications,
           32 (3). pp. 1056-1078. ISSN 0895-4798

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import fractional_matrix_power
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> b = fractional_matrix_power(a, 0.5)
    >>> b
    array([[ 0.75592895,  1.13389342],
           [ 0.37796447,  1.88982237]])
    >>> np.dot(b, b)      # Verify square root
    array([[ 1.,  3.],
           [ 1.,  4.]])

    r   N)r:   scipy.linalg._matfuncs_inv_ssqlinalg_matfuncs_inv_ssq_fractional_matrix_power)r7   tscipyr8   r8   r9   r(   b   s   )r(   Tc                 C   s   t | } ddl}|jj| }t| |}dt }t jddd t	t
||  dt jt	| d| jdjd  }W d   n1 sBw   Y  |r`t|rQ||kr^d	| }tj|td
d |S ||fS )a  
    Compute matrix logarithm.

    The matrix logarithm is the inverse of
    expm: expm(logm(`A`)) == `A`

    Parameters
    ----------
    A : (N, N) array_like
        Matrix whose logarithm to evaluate
    disp : bool, optional
        Emit warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    logm : (N, N) ndarray
        Matrix logarithm of `A`
    errest : float
        (if disp == False)

        1-norm of the estimated error, ||err||_1 / ||A||_1

    References
    ----------
    .. [1] Awad H. Al-Mohy and Nicholas J. Higham (2012)
           "Improved Inverse Scaling and Squaring Algorithms
           for the Matrix Logarithm."
           SIAM Journal on Scientific Computing, 34 (4). C152-C169.
           ISSN 1095-7197

    .. [2] Nicholas J. Higham (2008)
           "Functions of Matrices: Theory and Computation"
           ISBN 978-0-898716-46-7

    .. [3] Nicholas J. Higham and Lijing lin (2011)
           "A Schur-Pade Algorithm for Fractional Powers of a Matrix."
           SIAM Journal on Matrix Analysis and Applications,
           32 (3). pp. 1056-1078. ISSN 0895-4798

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import logm, expm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> b = logm(a)
    >>> b
    array([[-1.02571087,  2.05142174],
           [ 0.68380725,  1.02571087]])
    >>> expm(b)         # Verify expm(logm(a)) returns a
    array([[ 1.,  3.],
           [ 1.,  4.]])

    r   N  ignore)divideinvalidr   rD   r8   z1logm result may be inaccurate, approximate err = r0   )
stacklevel)r1   r2   rL   rM   rN   _logmrK   rB   errstater   r   rD   rH   r   warningswarnRuntimeWarning)r7   disprQ   r.   errtolerrestmessager8   r8   r9   r%      s   
7
0
r%   c              
   C   s  t | }|jdkr|jdk rt t | ggS |jdk r$td|jd |jd kr2tdt	|j dkrKt
t jd|jdj}t j||dS |jdd	 d
krYt |S t |jt jsh|t j}n|jt jkrt|t j}|jd }t j|j|jd}t jd||f|jd}tdd |jd	d D  D ]&}|| }t|}t|st t t |||< q||dd	d	d	d	f< t|\}	}
|	dk rtd|	 dt||	}|dkr|dkrtd| dtd| d|d }|
dkr|d dks	|d dkrt |}t |d|
   t d|d	d	< t j||d dkr,dndd}t|
d ddD ]V}|| }t |d|   t d|d	d	< t|d|   |d|    }|d dkr{|t d|dd	d	df d	d	< q8|t d|d	ddd	f d	d	< q8nt|
D ]}|| }q|d dks|d dkr|d dkrt  |nt !|||< q|||< q|S )a  Compute the matrix exponential of an array.

    Parameters
    ----------
    A : ndarray
        Input with last two dimensions are square ``(..., n, n)``.

    Returns
    -------
    eA : ndarray
        The resulting matrix exponential with the same shape of ``A``

    Notes
    -----
    Implements the algorithm given in [1], which is essentially a Pade
    approximation with a variable order that is decided based on the array
    data.

    For input with size ``n``, the memory usage is in the worst case in the
    order of ``8*(n**2)``. If the input data is not of single and double
    precision of real and complex dtypes, it is copied to a new array.

    For cases ``n >= 400``, the exact 1-norm computation cost, breaks even with
    1-norm estimation and from that point on the estimation scheme given in
    [2] is used to decide on the approximation order.

    References
    ----------
    .. [1] Awad H. Al-Mohy and Nicholas J. Higham, (2009), "A New Scaling
           and Squaring Algorithm for the Matrix Exponential", SIAM J. Matrix
           Anal. Appl. 31(3):970-989, :doi:`10.1137/09074721X`

    .. [2] Nicholas J. Higham and Francoise Tisseur (2000), "A Block Algorithm
           for Matrix 1-Norm Estimation, with an Application to 1-Norm
           Pseudospectra." SIAM J. Matrix Anal. Appl. 21(4):1185-1201,
           :doi:`10.1137/S0895479899356080`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import expm, sinm, cosm

    Matrix version of the formula exp(0) = 1:

    >>> expm(np.zeros((3, 2, 2)))
    array([[[1., 0.],
            [0., 1.]],
    <BLANKLINE>
           [[1., 0.],
            [0., 1.]],
    <BLANKLINE>
           [[1., 0.],
            [0., 1.]]])

    Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
    applied to a matrix:

    >>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
    >>> expm(1j*a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
    >>> cosm(a) + 1j*sinm(a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

    r   r0   z0The input array must be at least two-dimensionalz-Last 2 dimensions of the array must be squarer   rV   N)r   r      c                 S   s   g | ]}t |qS r8   )range).0xr8   r8   r9   
<listcomp>=  s    zexpm.<locals>.<listcomp>znscipy.linalg.expm could not allocate sufficient memory while trying to compute the Pade structure (error code z).izkscipy.linalg.expm could not allocate sufficient memory while trying to compute the exponential (error code z^scipy.linalg.expm got an internal LAPACK error during the exponential computation (error code )zii->i)kg       @)"r1   r2   sizendimarrayexpitemr   r4   minr   eyerD   
empty_like
issubdtypeinexactastypefloat64float16float32emptyr   r   anyr   r   MemoryErrorr   RuntimeErroreinsumrd   
_exp_sinchr   tril)r7   arD   neAAmindawlumsinfoeAwdiag_awsdr,   exp_sd_r8   r8   r9   r      sx   
C


"





$ $ (((
r   c                 C   sX   t t | }t | }|dk}||   ||    < t | d d | ||< |S )Nr=   ra   )r1   diffrm   )rf   	lexp_diffl_diffmask_zr8   r8   r9   r}     s   
r}   c                 C   s<   t | } t| rdtd|  td|    S td|  jS )a!  
    Compute the matrix cosine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array

    Returns
    -------
    cosm : (N, N) ndarray
        Matrix cosine of A

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import expm, sinm, cosm

    Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
    applied to a matrix:

    >>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
    >>> expm(1j*a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
    >>> cosm(a) + 1j*sinm(a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

          ?              ?             )r:   r1   r@   r   rH   r6   r8   r8   r9   r        !
r   c                 C   s<   t | } t| rdtd|  td|    S td|  jS )a   
    Compute the matrix sine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    sinm : (N, N) ndarray
        Matrix sine of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import expm, sinm, cosm

    Euler's identity (exp(i*theta) = cos(theta) + i*sin(theta))
    applied to a matrix:

    >>> a = np.array([[1.0, 2.0], [-1.0, 3.0]])
    >>> expm(1j*a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])
    >>> cosm(a) + 1j*sinm(a)
    array([[ 0.42645930+1.89217551j, -2.13721484-0.97811252j],
           [ 1.06860742+0.48905626j, -1.71075555+0.91406299j]])

    y             r   r   )r:   r1   r@   r   rG   r6   r8   r8   r9   r      r   r    c                 C       t | } t| tt| t| S )a  
    Compute the matrix tangent.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    tanm : (N, N) ndarray
        Matrix tangent of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanm, sinm, cosm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> t = tanm(a)
    >>> t
    array([[ -2.00876993,  -8.41880636],
           [ -2.80626879, -10.42757629]])

    Verify tanm(a) = sinm(a).dot(inv(cosm(a)))

    >>> s = sinm(a)
    >>> c = cosm(a)
    >>> s.dot(np.linalg.inv(c))
    array([[ -2.00876993,  -8.41880636],
           [ -2.80626879, -10.42757629]])

    )r:   rK   r   r   r    r6   r8   r8   r9   r!        #r!   c                 C   s$   t | } t| dt| t|    S )a  
    Compute the hyperbolic matrix cosine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    coshm : (N, N) ndarray
        Hyperbolic matrix cosine of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanhm, sinhm, coshm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> c = coshm(a)
    >>> c
    array([[ 11.24592233,  38.76236492],
           [ 12.92078831,  50.00828725]])

    Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

    >>> t = tanhm(a)
    >>> s = sinhm(a)
    >>> t - s.dot(np.linalg.inv(c))
    array([[  2.72004641e-15,   4.55191440e-15],
           [  0.00000000e+00,  -5.55111512e-16]])

    r   r:   rK   r   r6   r8   r8   r9   r"        #r"   c                 C   s$   t | } t| dt| t|    S )a  
    Compute the hyperbolic matrix sine.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array.

    Returns
    -------
    sinhm : (N, N) ndarray
        Hyperbolic matrix sine of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanhm, sinhm, coshm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> s = sinhm(a)
    >>> s
    array([[ 10.57300653,  39.28826594],
           [ 13.09608865,  49.86127247]])

    Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

    >>> t = tanhm(a)
    >>> c = coshm(a)
    >>> t - s.dot(np.linalg.inv(c))
    array([[  2.72004641e-15,   4.55191440e-15],
           [  0.00000000e+00,  -5.55111512e-16]])

    r   r   r6   r8   r8   r9   r#   (  r   r#   c                 C   r   )a  
    Compute the hyperbolic matrix tangent.

    This routine uses expm to compute the matrix exponentials.

    Parameters
    ----------
    A : (N, N) array_like
        Input array

    Returns
    -------
    tanhm : (N, N) ndarray
        Hyperbolic matrix tangent of `A`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import tanhm, sinhm, coshm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> t = tanhm(a)
    >>> t
    array([[ 0.3428582 ,  0.51987926],
           [ 0.17329309,  0.86273746]])

    Verify tanhm(a) = sinhm(a).dot(inv(coshm(a)))

    >>> s = sinhm(a)
    >>> c = coshm(a)
    >>> t - s.dot(np.linalg.inv(c))
    array([[  2.72004641e-15,   4.55191440e-15],
           [  0.00000000e+00,  -5.55111512e-16]])

    )r:   rK   r   r"   r#   r6   r8   r8   r9   r$   O  r   r$   c           
   	   C   s  t | } t| \}}t||\}}|j\}}t|t|}||jj}t|d }t	||||\}}t
t
||tt|}t| |}ttdt|jj  }|dkrV|}tdt||| tt|dd }	tttt|ddrwtj}	|r|	d| krtd|	 |S ||	fS )	a  
    Evaluate a matrix function specified by a callable.

    Returns the value of matrix-valued function ``f`` at `A`. The
    function ``f`` is an extension of the scalar-valued function `func`
    to matrices.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix at which to evaluate the function
    func : callable
        Callable object that evaluates a scalar function f.
        Must be vectorized (eg. using vectorize).
    disp : bool, optional
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    funm : (N, N) ndarray
        Value of the matrix function specified by func evaluated at `A`
    errest : float
        (if disp == False)

        1-norm of the estimated error, ||err||_1 / ||A||_1

    Notes
    -----
    This function implements the general algorithm based on Schur decomposition
    (Algorithm 9.1.1. in [1]_).

    If the input matrix is known to be diagonalizable, then relying on the
    eigendecomposition is likely to be faster. For example, if your matrix is
    Hermitian, you can do

    >>> from scipy.linalg import eigh
    >>> def funm_herm(a, func, check_finite=False):
    ...     w, v = eigh(a, check_finite=check_finite)
    ...     ## if you further know that your matrix is positive semidefinite,
    ...     ## you can optionally guard against precision errors by doing
    ...     # w = np.maximum(w, 0)
    ...     w = func(w)
    ...     return (v * w).dot(v.conj().T)

    References
    ----------
    .. [1] Gene H. Golub, Charles F. van Loan, Matrix Computations 4th ed.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import funm
    >>> a = np.array([[1.0, 3.0], [1.0, 4.0]])
    >>> funm(a, lambda x: x*x)
    array([[  4.,  15.],
           [  5.,  19.]])
    >>> a.dot(a)
    array([[  4.,  15.],
           [  5.,  19.]])

    )r   r   r<   r=   r   r   )axisrR   z0funm result may be inaccurate, approximate err =)r:   r   r   r4   r   rt   rD   rE   absr   r   r   r	   rK   rA   rB   rC   ro   maxr   r   r   r   r   r   r1   infprint)
r7   funcr]   TZr   r.   mindenrJ   errr8   r8   r9   r&   v  s*   ?

$
r&   c                 C   s  t | } dd }t| |dd\}}dt dt dt|jj  }||k r&|S t| dd}t	|}d	| }| |t
| jd   }	|}
td
D ]+}t|	}d	|	|  }	d	t|	|	|	  }tt||| d}||k sn|
|krp n|}
qG|rt|r}||krtd| |	S |	|fS )a'  
    Matrix sign function.

    Extension of the scalar sign(x) to matrices.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix at which to evaluate the sign function
    disp : bool, optional
        Print warning if error in the result is estimated large
        instead of returning estimated error. (Default: True)

    Returns
    -------
    signm : (N, N) ndarray
        Value of the sign function at `A`
    errest : float
        (if disp == False)

        1-norm of the estimated error, ||err||_1 / ||A||_1

    Examples
    --------
    >>> from scipy.linalg import signm, eigvals
    >>> a = [[1,2,3], [1,2,1], [1,1,1]]
    >>> eigvals(a)
    array([ 4.12488542+0.j, -0.76155718+0.j,  0.63667176+0.j])
    >>> eigvals(signm(a))
    array([-1.+0.j,  1.+0.j,  1.+0.j])

    c                 S   sL   t | }|jjdkrdt t|  }ndt t|  }tt||k| S )Nr+   r;   )	r1   rH   rD   rE   rA   r   rB   r   r
   )rf   rxcr8   r8   r9   rounded_sign  s
   
zsignm.<locals>.rounded_signr   )r]   r;   r<   F)
compute_uvr   d   r   z1signm result may be inaccurate, approximate err =)r:   r&   rA   rB   rC   rD   rE   r   r1   r   identityr4   rd   r   r   r   r   r   )r7   r]   r   resultr_   r^   valsmax_svr   S0prev_errestr,   iS0Ppr8   r8   r9   r'     s0   !

r'   c                 C   s   t | } t |}| jdkr|jdkstd| jd |jd ks&td| jdks0|jdkrH| jd |jd  }| jd }t j| ||fdS | dddt jddf |dt jddddf  }|d	|jdd  S )
a  
    Khatri-rao product

    A column-wise Kronecker product of two matrices

    Parameters
    ----------
    a : (n, k) array_like
        Input array
    b : (m, k) array_like
        Input array

    Returns
    -------
    c:  (n*m, k) ndarray
        Khatri-rao product of `a` and `b`.

    Notes
    -----
    The mathematical definition of the Khatri-Rao product is:

    .. math::

        (A_{ij}  \bigotimes B_{ij})_{ij}

    which is the Kronecker product of every column of A and B, e.g.::

        c = np.vstack([np.kron(a[:, k], b[:, k]) for k in range(b.shape[1])]).T

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[1, 2, 3], [4, 5, 6]])
    >>> b = np.array([[3, 4, 5], [6, 7, 8], [2, 3, 9]])
    >>> linalg.khatri_rao(a, b)
    array([[ 3,  8, 15],
           [ 6, 14, 24],
           [ 2,  6, 27],
           [12, 20, 30],
           [24, 35, 48],
           [ 8, 15, 54]])

    r0   z(The both arrays should be 2-dimensional.r   z6The number of columns for both arrays should be equal.r   )r4   .N)ra   )	r1   r2   rk   r5   r4   rj   rq   newaxisreshape)r   br   r   r   r8   r8   r9   r)   $  s   
-

4r)   )N)T)<rZ   	itertoolsr   numpyr1   r   r   r   r   r   r   r	   r
   r   r   r   r   scipy.linalgr   r   _miscr   _basicr   r   _decomp_svdr   _decomp_schurr   r   _expm_frechetr   r   _matfuncs_sqrtmr   _matfuncs_expmr   r   _linalg_pythranr   __all__finforB   rA   rC   r:   rK   r(   r%   r   r}   r   r    r!   r"   r#   r$   r&   r'   r)   r8   r8   r8   r9   <module>   sB   8
&
.I (
(('''
'
^P