o
    \h(                     @   s   d Z ddlmZmZ ddlZddlmZ ddlm	Z	m
Z
mZmZmZ ddlmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZ 	dddZdddZG dd de
e	edZdd ZG dd de
eedZdS )z)Base class for ensemble-based estimators.    )ABCMetaabstractmethodN)effective_n_jobs   )BaseEstimatorMetaEstimatorMixincloneis_classifieris_regressor)Bunchcheck_random_state)get_tags)_print_elapsed_time)_routing_enabled)_BaseCompositionc              
   C   s   t  sId|v rIz$t|| | j|||d d W d   W | S 1 s$w   Y  W | S  tyH } zdt|v rCtd| jj| d}~ww t|| | j||fi | W d   | S 1 sdw   Y  | S )z7Private function used to fit an estimator within a job.sample_weight)r   Nz+unexpected keyword argument 'sample_weight'z8Underlying estimator {} does not support sample weights.)r   r   fit	TypeErrorstrformat	__class____name__)	estimatorXy
fit_paramsmessage_clsnamemessageexc r   Y/home/air/segue/gemini/backup/venv/lib/python3.10/site-packages/sklearn/ensemble/_base.py_fit_single_estimator   s4   	
r!   c                 C   sh   t |}i }t| jddD ]}|dks|dr%|ttjj||< q|r2| j	di | dS dS )a  Set fixed random_state parameters for an estimator.

    Finds all parameters ending ``random_state`` and sets them to integers
    derived from ``random_state``.

    Parameters
    ----------
    estimator : estimator supporting get/set_params
        Estimator with potential randomness managed by random_state
        parameters.

    random_state : int, RandomState instance or None, default=None
        Pseudo-random number generator to control the generation of the random
        integers. Pass an int for reproducible output across multiple function
        calls.
        See :term:`Glossary <random_state>`.

    Notes
    -----
    This does not necessarily set *all* ``random_state`` attributes that
    control an estimator's randomness, only those accessible through
    ``estimator.get_params()``.  ``random_state``s not controlled include
    those belonging to:

        * cross-validation splitters
        * ``scipy.stats`` rvs
    Tdeeprandom_state__random_stateNr   )
r   sorted
get_paramsendswithrandintnpiinfoint32max
set_params)r   r$   to_setkeyr   r   r    _set_random_states+   s   r1   c                   @   sV   e Zd ZdZe	dde dddZdddZdd
dZdd Z	dd Z
dd ZdS )BaseEnsemblea  Base class for all ensemble classes.

    Warning: This class should not be used directly. Use derived classes
    instead.

    Parameters
    ----------
    estimator : object
        The base estimator from which the ensemble is built.

    n_estimators : int, default=10
        The number of estimators in the ensemble.

    estimator_params : list of str, default=tuple()
        The list of attributes to use as parameters when instantiating a
        new base estimator. If none are given, default parameters are used.

    Attributes
    ----------
    estimator_ : estimator
        The base estimator from which the ensemble is grown.

    estimators_ : list of estimators
        The collection of fitted base estimators.
    N
   )n_estimatorsestimator_paramsc                C   s   || _ || _|| _d S N)r   r4   r5   )selfr   r4   r5   r   r   r    __init__l   s   	
zBaseEnsemble.__init__c                 C   s    | j dur| j | _dS || _dS )zMCheck the base estimator.

        Sets the `estimator_` attributes.
        N)r   
estimator_)r7   defaultr   r   r    _validate_estimator}   s   

z BaseEnsemble._validate_estimatorTc                    sP   t  j}|jdi  fdd jD  |durt|| |r& j| |S )zMake and configure a copy of the `estimator_` attribute.

        Warning: This method should be used to properly instantiate new
        sub-estimators.
        c                    s   i | ]}|t  |qS r   )getattr).0pr7   r   r    
<dictcomp>   s    z0BaseEnsemble._make_estimator.<locals>.<dictcomp>Nr   )r   r9   r.   r5   r1   estimators_append)r7   rB   r$   r   r   r?   r    _make_estimator   s   
 
zBaseEnsemble._make_estimatorc                 C   
   t | jS )z0Return the number of estimators in the ensemble.)lenrA   r?   r   r   r    __len__      
zBaseEnsemble.__len__c                 C   s
   | j | S )z.Return the index'th estimator in the ensemble.)rA   )r7   indexr   r   r    __getitem__   rG   zBaseEnsemble.__getitem__c                 C   rD   )z0Return iterator over estimators in the ensemble.)iterrA   r?   r   r   r    __iter__   rG   zBaseEnsemble.__iter__r6   )TN)r   
__module____qualname____doc__r   tupler8   r;   rC   rF   rI   rK   r   r   r   r    r2   Q   s    


r2   )	metaclassc                 C   s\   t t|| }tj|| | td}|d| |   d7  < t|}|| dg|  fS )z;Private function used to partition estimators between jobs.)dtypeN   r   )minr   r*   fullintcumsumtolist)r4   n_jobsn_estimators_per_jobstartsr   r   r    _partition_estimators   s
   
r[   c                       sZ   e Zd ZdZedd Zedd Zdd Z fdd	Z	d fdd	Z
 fddZ  ZS )_BaseHeterogeneousEnsemblea  Base class for heterogeneous ensemble of learners.

    Parameters
    ----------
    estimators : list of (str, estimator) tuples
        The ensemble of estimators to use in the ensemble. Each element of the
        list is defined as a tuple of string (i.e. name of the estimator) and
        an estimator instance. An estimator can be set to `'drop'` using
        `set_params`.

    Attributes
    ----------
    estimators_ : list of estimators
        The elements of the estimators parameter, having been fitted on the
        training data. If an estimator has been set to `'drop'`, it will not
        appear in `estimators_`.
    c                 C   s   t di t| jS )zDictionary to access any fitted sub-estimators by name.

        Returns
        -------
        :class:`~sklearn.utils.Bunch`
        Nr   )r   dict
estimatorsr?   r   r   r    named_estimators   s   z+_BaseHeterogeneousEnsemble.named_estimatorsc                 C   s
   || _ d S r6   r^   )r7   r^   r   r   r    r8      rG   z#_BaseHeterogeneousEnsemble.__init__c                 C   s   t | jdkrtdt| j \}}| | tdd |D }|s&tdt| r,tnt}|D ]}|dkrI||sItd|j	j
|j
dd  q0||fS )	Nr   zfInvalid 'estimators' attribute, 'estimators' should be a non-empty list of (string, estimator) tuples.c                 s   s    | ]}|d kV  qdS )dropNr   r=   estr   r   r    	<genexpr>   s    zB_BaseHeterogeneousEnsemble._validate_estimators.<locals>.<genexpr>zHAll estimators are dropped. At least one is required to be an estimator.ra   z The estimator {} should be a {}.   )rE   r^   
ValueErrorzip_validate_namesanyr	   r
   r   r   r   )r7   namesr^   has_estimatoris_estimator_typerc   r   r   r    _validate_estimators   s*   
z/_BaseHeterogeneousEnsemble._validate_estimatorsc                    s   t  jdi | | S )a  
        Set the parameters of an estimator from the ensemble.

        Valid parameter keys can be listed with `get_params()`. Note that you
        can directly set the parameters of the estimators contained in
        `estimators`.

        Parameters
        ----------
        **params : keyword arguments
            Specific parameters using e.g.
            `set_params(parameter_name=new_value)`. In addition, to setting the
            parameters of the estimator, the individual estimator of the
            estimators can also be set, or can be removed by setting them to
            'drop'.

        Returns
        -------
        self : object
            Estimator instance.
        r^   Nr`   )super_set_params)r7   paramsr   r   r    r.      s   z%_BaseHeterogeneousEnsemble.set_paramsTc                    s   t  jd|dS )a<  
        Get the parameters of an estimator from the ensemble.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `estimators` parameter.

        Parameters
        ----------
        deep : bool, default=True
            Setting it to True gets the various estimators and the parameters
            of the estimators as well.

        Returns
        -------
        params : dict
            Parameter and estimator names mapped to their values or parameter
            names mapped to their values.
        r^   r"   )rn   _get_params)r7   r#   rq   r   r    r'     s   z%_BaseHeterogeneousEnsemble.get_paramsc                    sV   t   }ztdd | jD |j_tdd | jD |j_W |S  ty*   Y |S w )Nc                 s   0    | ]}|d  dkrt |d  jjndV  qdS rR   ra   TN)r   
input_tags	allow_nanrb   r   r   r    rd   #  
    
z>_BaseHeterogeneousEnsemble.__sklearn_tags__.<locals>.<genexpr>c                 s   rs   rt   )r   ru   sparserb   r   r   r    rd   '  rw   )rn   __sklearn_tags__allr^   ru   rv   rx   	Exception)r7   tagsrq   r   r    ry      s   
	z+_BaseHeterogeneousEnsemble.__sklearn_tags__)T)r   rL   rM   rN   propertyr_   r   r8   rm   r.   r'   ry   __classcell__r   r   rq   r    r\      s    
	
r\   )NNr6   )rN   abcr   r   numpyr*   joblibr   baser   r   r   r	   r
   utilsr   r   utils._tagsr   utils._user_interfacer   utils.metadata_routingr   utils.metaestimatorsr   r!   r1   r2   r[   r\   r   r   r   r    <module>   s$    

&T

