o
    \hR                     @  sL  d dl mZ d dlmZmZmZmZmZ d dlm	Z	m
Z
 d dlZddlmZ ddlmZ ddlmZmZmZmZmZ dd	lmZmZmZ dd
lmZ ddlmZmZ ddlm Z m!Z! ddl"m#Z#m$Z$ ddl%m&Z& ddl'm(Z( ddl)m*Z* ddgZ+G dd deZ,G dd deZ-G dd dZ.G dd dZ/G dd dZ0G dd dZ1dS )    )annotations)DictListUnionIterableOptional)LiteraloverloadN   )_legacy_response)completion_create_params)	NOT_GIVENBodyQueryHeadersNotGiven)required_argsmaybe_transformasync_maybe_transform)cached_property)SyncAPIResourceAsyncAPIResource)to_streamed_response_wrapper"async_to_streamed_response_wrapper)StreamAsyncStream)make_request_options)
Completion) ChatCompletionStreamOptionsParamCompletionsAsyncCompletionsc                   @    e Zd Zed<ddZed=ddZeeeeeeeeeeeeeeeeeddded	d>d0d1Zeeeeeeeeeeeeeeeeddded2d?d5d1Zeeeeeeeeeeeeeeeeddded2d@d8d1Ze	d
dgg d9eeeeeeeeeeeeeeeeddded	dAd;d1ZdS )Br   returnCompletionsWithRawResponsec                 C     t | S a  
        This property can be used as a prefix for any HTTP method call to return the
        the raw response object instead of the parsed content.

        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
        )r#   self r(   _/home/air/segue/gemini/backup/venv/lib/python3.10/site-packages/openai/resources/completions.pywith_raw_response       zCompletions.with_raw_response CompletionsWithStreamingResponsec                 C  r$   z
        An alternative to `.with_raw_response` that doesn't eagerly read the response body.

        For more information, see https://www.github.com/openai/openai-python#with_streaming_response
        )r,   r&   r(   r(   r)   with_streaming_response*      z#Completions.with_streaming_responseNbest_ofechofrequency_penalty
logit_biaslogprobs
max_tokensnpresence_penaltyseedstopstreamstream_optionssuffixtemperaturetop_puserextra_headersextra_query
extra_bodytimeoutmodelKUnion[str, Literal['gpt-3.5-turbo-instruct', 'davinci-002', 'babbage-002']]promptCUnion[str, List[str], Iterable[int], Iterable[Iterable[int]], None]r1   Optional[int] | NotGivenr2   Optional[bool] | NotGivenr3   Optional[float] | NotGivenr4   #Optional[Dict[str, int]] | NotGivenr5   r6   r7   r8   r9   r:   0Union[Optional[str], List[str], None] | NotGivenr;   #Optional[Literal[False]] | NotGivenr<   5Optional[ChatCompletionStreamOptionsParam] | NotGivenr=   Optional[str] | NotGivenr>   r?   r@   str | NotGivenrA   Headers | NonerB   Query | NonerC   Body | NonerD   'float | httpx.Timeout | None | NotGivenr   c                C     dS u  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models/overview) for
              descriptions of them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        Nr(   r'   rE   rG   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   r(   r(   r)   create3       zCompletions.creater1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r<   r=   r>   r?   r@   rA   rB   rC   rD   Literal[True]Stream[Completion]c                C  rV   u  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models/overview) for
              descriptions of them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        Nr(   r'   rE   rG   r;   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r<   r=   r>   r?   r@   rA   rB   rC   rD   r(   r(   r)   rY      rZ   boolCompletion | Stream[Completion]c                C  rV   r^   r(   r_   r(   r(   r)   rY   e  rZ   rE   rG   r;   3Optional[Literal[False]] | Literal[True] | NotGivenc             	   C  s   | j dti d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|itjt||||dt|pJdtt dS Nz/completionsrE   rG   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   )rA   rB   rC   rD   F)bodyoptionscast_tor;   
stream_cls)_postr   r   CompletionCreateParamsr   r   r   rX   r(   r(   r)   rY     sb   	
)r"   r#   )r"   r,   .rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r;   rN   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   r   ).rE   rF   rG   rH   r;   r\   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   r]   ).rE   rF   rG   rH   r;   r`   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   ra   ).rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r;   rc   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   ra   
__name__
__module____qualname__r   r*   r.   r	   r   rY   r   r(   r(   r(   r)   r          	   c                   @  r!   )Br    r"   AsyncCompletionsWithRawResponsec                 C  r$   r%   )rq   r&   r(   r(   r)   r*   >  r+   z"AsyncCompletions.with_raw_response%AsyncCompletionsWithStreamingResponsec                 C  r$   r-   )rr   r&   r(   r(   r)   r.   H  r/   z(AsyncCompletions.with_streaming_responseNr0   rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   r6   r7   r8   r9   r:   rM   r;   rN   r<   rO   r=   rP   r>   r?   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r   c                     dS rW   r(   rX   r(   r(   r)   rY   Q      zAsyncCompletions.creater[   r\   AsyncStream[Completion]c                  rs   r^   r(   r_   r(   r(   r)   rY     rt   r`   $Completion | AsyncStream[Completion]c                  rs   r^   r(   r_   r(   r(   r)   rY     rt   rb   rc   c             	     s   | j dti d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|itjI d H t||||dt|pNdtt dI d H S rd   )ri   r   r   rj   r   r   r   rX   r(   r(   r)   rY     sd   	
)r"   rq   )r"   rr   rk   ).rE   rF   rG   rH   r;   r\   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   ru   ).rE   rF   rG   rH   r;   r`   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   rv   ).rE   rF   rG   rH   r1   rI   r2   rJ   r3   rK   r4   rL   r5   rI   r6   rI   r7   rI   r8   rK   r9   rI   r:   rM   r;   rc   r<   rO   r=   rP   r>   rK   r?   rK   r@   rQ   rA   rR   rB   rS   rC   rT   rD   rU   r"   rv   rl   r(   r(   r(   r)   r    =  rp   c                   @     e Zd ZdddZdS )	r#   completionsr   r"   Nonec                 C     || _ t|j| _d S N)_completionsr   to_raw_response_wrapperrY   r'   rx   r(   r(   r)   __init__\     
z#CompletionsWithRawResponse.__init__Nrx   r   r"   ry   rm   rn   ro   r   r(   r(   r(   r)   r#   [      r#   c                   @  rw   )	rq   rx   r    r"   ry   c                 C  rz   r{   )r|   r   async_to_raw_response_wrapperrY   r~   r(   r(   r)   r   e  r   z(AsyncCompletionsWithRawResponse.__init__Nrx   r    r"   ry   r   r(   r(   r(   r)   rq   d  r   rq   c                   @  rw   )	r,   rx   r   r"   ry   c                 C     || _ t|j| _d S r{   )r|   r   rY   r~   r(   r(   r)   r   n     
z)CompletionsWithStreamingResponse.__init__Nr   r   r(   r(   r(   r)   r,   m  r   r,   c                   @  rw   )	rr   rx   r    r"   ry   c                 C  r   r{   )r|   r   rY   r~   r(   r(   r)   r   w  r   z.AsyncCompletionsWithStreamingResponse.__init__Nr   r   r(   r(   r(   r)   rr   v  r   rr   )2
__future__r   typingr   r   r   r   r   typing_extensionsr   r	   httpx r   typesr   _typesr   r   r   r   r   _utilsr   r   r   _compatr   	_resourcer   r   	_responser   r   
_streamingr   r   _base_clientr   types.completionr   /types.chat.chat_completion_stream_options_paramr   __all__r   r    r#   rq   r,   rr   r(   r(   r(   r)   <module>   s<       "    "			