o
    Th                     @   s   d Z ddlmZ ddlZddlmZ ddlmZm	Z	m
Z
 ddlmZ ddlmZmZ e
d	d
gd	ge	ddhgdgeeddddgdddddddddZdS )z!Determination of parameter bounds    )RealN   )LabelBinarizer)Interval
StrOptionsvalidate_params)safe_sparse_dot)check_arraycheck_consistent_lengthz
array-likezsparse matrixsquared_hingelogbooleanneither)closed)Xylossfit_interceptintercept_scalingT)prefer_skip_nested_validationg      ?)r   r   r   c                C   s   t | dd} t| | tdd|j}ttt|| }|r?tj	t
|df|t|jd}t|tt|| }|dkrGtd|d	krOd
| S d| S )a  Return the lowest bound for C.

    The lower bound for C is computed such that for C in (l1_min_C, infinity)
    the model is guaranteed not to be empty. This applies to l1 penalized
    classifiers, such as LinearSVC with penalty='l1' and
    linear_model.LogisticRegression with penalty='l1'.

    This value is valid if class_weight parameter in fit() is not set.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training vector, where `n_samples` is the number of samples and
        `n_features` is the number of features.

    y : array-like of shape (n_samples,)
        Target vector relative to X.

    loss : {'squared_hinge', 'log'}, default='squared_hinge'
        Specifies the loss function.
        With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).
        With 'log' it is the loss of logistic regression models.

    fit_intercept : bool, default=True
        Specifies if the intercept should be fitted by the model.
        It must match the fit() method parameter.

    intercept_scaling : float, default=1.0
        When fit_intercept is True, instance vector x becomes
        [x, intercept_scaling],
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        It must match the fit() method parameter.

    Returns
    -------
    l1_min_c : float
        Minimum value for C.

    Examples
    --------
    >>> from sklearn.svm import l1_min_c
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_features=20, random_state=42)
    >>> print(f"{l1_min_c(X, y, loss='squared_hinge', fit_intercept=True):.4f}")
    0.0044
    csc)accept_sparse)	neg_label   )dtypeg        zUIll-posed l1_min_c calculation: l1 will always select zero coefficients for this datar   g      ?g       @)r	   r
   r   fit_transformTnpmaxabsr   fullsizearrayr   dot
ValueError)r   r   r   r   r   Ydenbias r)   S/home/air/segue/gpt/backup/venv/lib/python3.10/site-packages/sklearn/svm/_bounds.pyl1_min_c   s    ;
r+   )__doc__numbersr   numpyr   preprocessingr   utils._param_validationr   r   r   utils.extmathr   utils.validationr	   r
   r+   r)   r)   r)   r*   <module>   s"    
