o
    Th]/                     @   sb   d Z ddlZddlmZ ddlmZ ddlmZm	Z	 dd	 Z
d
d Z		dddZ	dddZdS )zwUtilities to get the response values of a classifier or a regressor.

It allows to make uniform checks and validation.
    N   )is_classifier   )type_of_target)_check_response_methodcheck_is_fittedc                 C   s   |dkr| j d dk rtd| j  d|dkr)t||kd }| dd|f S |dkr?t| tr=td	d
 | D jS | S | S )a  Get the response values when the response method is `predict_proba`.

    This function process the `y_pred` array in the binary and multi-label cases.
    In the binary case, it selects the column corresponding to the positive
    class. In the multi-label case, it stacks the predictions if they are not
    in the "compressed" format `(n_samples, n_outputs)`.

    Parameters
    ----------
    y_pred : ndarray
        Output of `estimator.predict_proba`. The shape depends on the target type:

        - for binary classification, it is a 2d array of shape `(n_samples, 2)`;
        - for multiclass classification, it is a 2d array of shape
          `(n_samples, n_classes)`;
        - for multilabel classification, it is either a list of 2d arrays of shape
          `(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
          an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
          `RidgeClassifier`).

    target_type : {"binary", "multiclass", "multilabel-indicator"}
        Type of the target.

    classes : ndarray of shape (n_classes,) or list of such arrays
        Class labels as reported by `estimator.classes_`.

    pos_label : int, float, bool or str
        Only used with binary and multiclass targets.

    Returns
    -------
    y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or             (n_samples, n_output)
        Compressed predictions format as requested by the metrics.
    binaryr   r   zGot predict_proba of shape z', but need classifier with two classes.r   Nzmultilabel-indicatorc                 S   s   g | ]
}|d d df qS )N ).0pr
   r
   W/home/air/segue/gpt/backup/venv/lib/python3.10/site-packages/sklearn/utils/_response.py
<listcomp>D   s    z*_process_predict_proba.<locals>.<listcomp>)shape
ValueErrornpflatnonzero
isinstancelistvstackT)y_predtarget_typeclasses	pos_labelcol_idxr
   r
   r   _process_predict_proba   s   $
r   c                 C   s    |dkr||d krd|  S | S )a{  Get the response values when the response method is `decision_function`.

    This function process the `y_pred` array in the binary and multi-label cases.
    In the binary case, it inverts the sign of the score if the positive label
    is not `classes[1]`. In the multi-label case, it stacks the predictions if
    they are not in the "compressed" format `(n_samples, n_outputs)`.

    Parameters
    ----------
    y_pred : ndarray
        Output of `estimator.decision_function`. The shape depends on the target type:

        - for binary classification, it is a 1d array of shape `(n_samples,)` where the
          sign is assuming that `classes[1]` is the positive class;
        - for multiclass classification, it is a 2d array of shape
          `(n_samples, n_classes)`;
        - for multilabel classification, it is a 2d array of shape `(n_samples,
          n_outputs)`.

    target_type : {"binary", "multiclass", "multilabel-indicator"}
        Type of the target.

    classes : ndarray of shape (n_classes,) or list of such arrays
        Class labels as reported by `estimator.classes_`.

    pos_label : int, float, bool or str
        Only used with binary and multiclass targets.

    Returns
    -------
    y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or             (n_samples, n_output)
        Compressed predictions format as requested by the metrics.
    r   r   r	   r
   r   r   r   r   r
   r
   r   _process_decision_functionL   s   #r   Fc                 C   s,  ddl m}m} || r\t| |}| j}t|}	|	dv r<|dur0|| vr0td| d| |du r<|	dkr<|d }||}
|jd	v rNt	|
|	||d
}
n<|jdkr[t
|
|	||d
}
n.|| rmt| |}||d}
}n|dkrt| jj d| d| d| j}||d}
}|r|
||jfS |
|fS )a  Compute the response values of a classifier, an outlier detector, or a regressor.

    The response values are predictions such that it follows the following shape:

    - for binary classification, it is a 1d array of shape `(n_samples,)`;
    - for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
    - for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
    - for outlier detection, it is a 1d array of shape `(n_samples,)`;
    - for regression, it is a 1d array of shape `(n_samples,)`.

    If `estimator` is a binary classifier, also return the label for the
    effective positive class.

    This utility is used primarily in the displays and the scikit-learn scorers.

    .. versionadded:: 1.3

    Parameters
    ----------
    estimator : estimator instance
        Fitted classifier, outlier detector, or regressor or a
        fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a
        classifier, an outlier detector, or a regressor.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input values.

    response_method : {"predict_proba", "predict_log_proba", "decision_function",             "predict"} or list of such str
        Specifies the response method to use get prediction from an estimator
        (i.e. :term:`predict_proba`, :term:`predict_log_proba`,
        :term:`decision_function` or :term:`predict`). Possible choices are:

        - if `str`, it corresponds to the name to the method to return;
        - if a list of `str`, it provides the method names in order of
          preference. The method returned corresponds to the first method in
          the list and which is implemented by `estimator`.

    pos_label : int, float, bool or str, default=None
        The class considered as the positive class when computing
        the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is
        considered as the positive class.

    return_response_method_used : bool, default=False
        Whether to return the response method used to compute the response
        values.

        .. versionadded:: 1.4

    Returns
    -------
    y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or             (n_samples, n_outputs)
        Target scores calculated from the provided `response_method`
        and `pos_label`.

    pos_label : int, float, bool, str or None
        The class considered as the positive class when computing
        the metrics. Returns `None` if `estimator` is a regressor or an outlier
        detector.

    response_method_used : str
        The response method used to compute the response values. Only returned
        if `return_response_method_used` is `True`.

        .. versionadded:: 1.4

    Raises
    ------
    ValueError
        If `pos_label` is not a valid label.
        If the shape of `y_pred` is not consistent for binary classifier.
        If the response method can be applied to a classifier only and
        `estimator` is a regressor.
    r   )r   is_outlier_detector)r   
multiclassNz
pos_label=z+ is not a valid label: It should be one of r   r	   )predict_probapredict_log_probar   decision_functionpredictz? should either be a classifier to be used with response_method=zR or the response_method should be 'predict'. Got a regressor with response_method=	 instead.)sklearn.baser   r   r   classes_r   tolistr   __name__r   r   	__class__r$   )	estimatorXresponse_methodr   return_response_method_usedr   r   prediction_methodr   r   r   r
   r
   r   _get_response_valuest   s\   R




r0   c                 C   sv   d}t |  t| st|d| jj d t| jdkr*t|dt| j d |dkr2ddg}t| ||||d	S )
a  Compute the response values of a binary classifier.

    Parameters
    ----------
    estimator : estimator instance
        Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
        in which the last estimator is a binary classifier.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input values.

    response_method : {'auto', 'predict_proba', 'decision_function'}
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. If set to 'auto',
        :term:`predict_proba` is tried first and if it does not exist
        :term:`decision_function` is tried next.

    pos_label : int, float, bool or str, default=None
        The class considered as the positive class when computing
        the metrics. By default, `estimators.classes_[1]` is
        considered as the positive class.

    return_response_method_used : bool, default=False
        Whether to return the response method used to compute the response
        values.

        .. versionadded:: 1.5

    Returns
    -------
    y_pred : ndarray of shape (n_samples,)
        Target scores calculated from the provided response_method
        and pos_label.

    pos_label : int, float, bool or str
        The class considered as the positive class when computing
        the metrics.

    response_method_used : str
        The response method used to compute the response values. Only returned
        if `return_response_method_used` is `True`.

        .. versionadded:: 1.5
    z/Expected 'estimator' to be a binary classifier.z Got r%   r   z classes instead.autor!   r#   )r   r.   )r   r   r   r*   r)   lenr'   r0   )r+   r,   r-   r   r.   classification_errorr
   r
   r   _get_response_values_binary   s&   /r4   )NF)__doc__numpyr   baser   r    r   
validationr   r   r   r   r0   r4   r
   r
   r
   r   <module>   s    <,
 