o
    #`^hf                     @  s  d dl mZ d dlmZmZmZmZmZmZm	Z	 d dl
mZ d dlmZ d dlZddlmZ ddlmZmZmZmZmZ dd	lmZmZ dd
lmZ ddlmZmZ ddlm Z m!Z! ddl"m#Z# ddl$m%Z% ddl&m'Z' ddl(m)Z)m*Z+m,Z-m.Z/ ddl0m1Z1 ddl2m3Z3m4Z4 ddl5m6Z6 ddl7m8Z8 ddl9m:Z: ddl;m<Z< ddl=m>Z> ddl?m@Z@ ddlAmBZB ddgZCG dd deZDG dd deZEG dd dZFG d d! d!ZGG d"d# d#ZHG d$d% d%ZIdS )&    )annotations)DictListTypeUnionIterableOptionalcast)partial)LiteralN   )_legacy_response)	NOT_GIVENBodyQueryHeadersNotGiven)maybe_transformasync_maybe_transform)cached_property)SyncAPIResourceAsyncAPIResource)to_streamed_response_wrapper"async_to_streamed_response_wrapper)Stream)completion_create_params)make_request_options)ResponseFormatTvalidate_input_toolsparse_chat_completiontype_to_response_format_param)	ChatModel)ChatCompletionStreamManager AsyncChatCompletionStreamManager)ChatCompletion)ChatCompletionChunk)ParsedChatCompletion)ChatCompletionToolParam)ChatCompletionMessageParam) ChatCompletionStreamOptionsParam)#ChatCompletionToolChoiceOptionParamCompletionsAsyncCompletionsc                   @     e Zd ZedCddZedDddZeeeeeeeeeeeeeeeeeeeeeeeddded	dEd=d>Zeeeeeeeeeeeeeeeeeeeeeeeddded	dFdAdBZdS )Gr+   returnCompletionsWithRawResponsec                 C     t | S a  
        This property can be used as a prefix for any HTTP method call to return the
        the raw response object instead of the parsed content.

        For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
        )r/   self r4   d/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/openai/resources/beta/chat/completions.pywith_raw_response(      zCompletions.with_raw_response CompletionsWithStreamingResponsec                 C  r0   z
        An alternative to `.with_raw_response` that doesn't eagerly read the response body.

        For more information, see https://www.github.com/openai/openai-python#with_streaming_response
        )r8   r2   r4   r4   r5   with_streaming_response2      z#Completions.with_streaming_responseNresponse_formatfrequency_penaltyfunction_call	functions
logit_biaslogprobsmax_completion_tokens
max_tokensmetadatanparallel_tool_callspresence_penaltyseedservice_tierstopstorestream_optionstemperaturetool_choicetoolstop_logprobstop_puserextra_headersextra_query
extra_bodytimeoutmessages$Iterable[ChatCompletionMessageParam]modelUnion[str, ChatModel]r=    type[ResponseFormatT] | NotGivenr>   Optional[float] | NotGivenr?   0completion_create_params.FunctionCall | NotGivenr@   6Iterable[completion_create_params.Function] | NotGivenrA   #Optional[Dict[str, int]] | NotGivenrB   Optional[bool] | NotGivenrC   Optional[int] | NotGivenrD   rE   #Optional[Dict[str, str]] | NotGivenrF   rG   bool | NotGivenrH   rI   rJ   /Optional[Literal['auto', 'default']] | NotGivenrK   *Union[Optional[str], List[str]] | NotGivenrL   rM   5Optional[ChatCompletionStreamOptionsParam] | NotGivenrN   rO   .ChatCompletionToolChoiceOptionParam | NotGivenrP   ,Iterable[ChatCompletionToolParam] | NotGivenrQ   rR   rS   str | NotGivenrT   Headers | NonerU   Query | NonerV   Body | NonerW   'float | httpx.Timeout | None | NotGiven%ParsedChatCompletion[ResponseFormatT]c                  s   t  ddi|p
i }d  fdd}| jd	ti d
|d|d|d|d|d|d|d|	d|
d|d|d|d|dt d|d|d||d||||||d	tjt|||||dttt	t
  tddS )!a  Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types
        & returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.

        You can pass a pydantic model to this method and it will automatically convert the model
        into a JSON schema, send it to the API and parse the response content back into the given model.

        This method will also automatically parse `function` tool calls if:
        - You use the `openai.pydantic_function_tool()` helper method
        - You mark your tool schema with `"strict": True`

        Example usage:
        ```py
        from pydantic import BaseModel
        from openai import OpenAI


        class Step(BaseModel):
            explanation: str
            output: str


        class MathResponse(BaseModel):
            steps: List[Step]
            final_answer: str


        client = OpenAI()
        completion = client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful math tutor."},
                {"role": "user", "content": "solve 8x + 31 = 2"},
            ],
            response_format=MathResponse,
        )

        message = completion.choices[0].message
        if message.parsed:
            print(message.parsed.steps)
            print("answer: ", message.parsed.final_answer)
        ```
        X-Stainless-Helper-Methodbeta.chat.completions.parseraw_completionr$   r.   ro   c                      t  | dS N)r=   chat_completioninput_tools_parse_chat_completionrr   r=   rP   r4   r5   parser   
   z!Completions.parse.<locals>.parser/chat/completionsrX   rZ   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   r=   rI   rJ   rK   F)	rL   streamrM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   post_parserbodyoptionscast_tor~   Nrr   r$   r.   ro   )_validate_input_tools_postr   _type_to_response_formatr   CompletionCreateParamsr   r	   r   r&   r   r$   r3   rX   rZ   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   r{   r4   rz   r5   parse;   s   M	
	zCompletions.parseJcompletion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven,ChatCompletionStreamManager[ResponseFormatT]c                C  s   ddi|pi }t | jjjjfi d|d|dddt|d|d	|d
|d|d|d|	d|
d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d |d!|}t|||d"S )#a  Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API
        and automatic accumulation of each delta.

        This also supports all of the parsing utilities that `.parse()` does.

        Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:

        ```py
        with client.beta.chat.completions.stream(
            model="gpt-4o-2024-08-06",
            messages=[...],
        ) as stream:
            for event in stream:
                if event.type == "content.delta":
                    print(event.delta, flush=True, end="")
        ```

        When the context manager is entered, a `ChatCompletionStream` instance is returned which, like `.create(stream=True)` is an iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events).

        When the context manager exits, the response will be closed, however the `stream` instance is still available outside
        the context manager.
        rp   beta.chat.completions.streamrX   rZ   r~   Tr=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rL   rK   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   r=   rv   )r
   _clientchatcompletionscreater   r"   r3   rX   rZ   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   api_requestr4   r4   r5   r~      s   :
	
!zCompletions.stream)r.   r/   )r.   r8   <rX   rY   rZ   r[   r=   r\   r>   r]   r?   r^   r@   r_   rA   r`   rB   ra   rC   rb   rD   rb   rE   rc   rF   rb   rG   rd   rH   r]   rI   rb   rJ   re   rK   rf   rL   ra   rM   rg   rN   r]   rO   rh   rP   ri   rQ   rb   rR   r]   rS   rj   rT   rk   rU   rl   rV   rm   rW   rn   r.   ro   )<rX   rY   rZ   r[   r=   r   r>   r]   r?   r^   r@   r_   rA   r`   rB   ra   rC   rb   rD   rb   rE   rc   rF   rb   rG   rd   rH   r]   rI   rb   rJ   re   rK   rf   rL   ra   rM   rg   rN   r]   rO   rh   rP   ri   rQ   rb   rR   r]   rS   rj   rT   rk   rU   rl   rV   rm   rW   rn   r.   r   	__name__
__module____qualname__r   r6   r:   r   r   r~   r4   r4   r4   r5   r+   '   |    	 c                   @  r-   )Gr,   r.   AsyncCompletionsWithRawResponsec                 C  r0   r1   )r   r2   r4   r4   r5   r6   +  r7   z"AsyncCompletions.with_raw_response%AsyncCompletionsWithStreamingResponsec                 C  r0   r9   )r   r2   r4   r4   r5   r:   5  r;   z(AsyncCompletions.with_streaming_responseNr<   rX   rY   rZ   r[   r=   r\   r>   r]   r?   r^   r@   r_   rA   r`   rB   ra   rC   rb   rD   rE   rc   rF   rG   rd   rH   rI   rJ   re   rK   rf   rL   rM   rg   rN   rO   rh   rP   ri   rQ   rR   rS   rj   rT   rk   rU   rl   rV   rm   rW   rn   ro   c                  s   t  ddi|pi }d  fdd}| jd	ti d
|d|d|d|d|d|d|d|	d|
d|d|d|d|dt d|d|d||d||||||d	tjI dH t|||||dttt	t
  tddI dH S )!a  Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types
        & returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.

        You can pass a pydantic model to this method and it will automatically convert the model
        into a JSON schema, send it to the API and parse the response content back into the given model.

        This method will also automatically parse `function` tool calls if:
        - You use the `openai.pydantic_function_tool()` helper method
        - You mark your tool schema with `"strict": True`

        Example usage:
        ```py
        from pydantic import BaseModel
        from openai import AsyncOpenAI


        class Step(BaseModel):
            explanation: str
            output: str


        class MathResponse(BaseModel):
            steps: List[Step]
            final_answer: str


        client = AsyncOpenAI()
        completion = await client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful math tutor."},
                {"role": "user", "content": "solve 8x + 31 = 2"},
            ],
            response_format=MathResponse,
        )

        message = completion.choices[0].message
        if message.parsed:
            print(message.parsed.steps)
            print("answer: ", message.parsed.final_answer)
        ```
        rp   rq   rr   r$   r.   ro   c                   rs   rt   rw   ry   rz   r4   r5   r{     r|   z&AsyncCompletions.parse.<locals>.parserr}   rX   rZ   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   r=   rI   rJ   rL   F)	rK   r~   rM   rN   rO   rP   rQ   rR   rS   Nr   r   r   )r   r   r   r   r   r   r   r	   r   r&   r   r$   r   r4   rz   r5   r   >  s   M	
	zAsyncCompletions.parser   1AsyncChatCompletionStreamManager[ResponseFormatT]c                C  s   t | ddi|p
i }| jjjjd$i d|d|dddt|d|d	|d
|d|d|d|	d|
d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d|d |d!|}t|||d"S )%a  Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API
        and automatic accumulation of each delta.

        This also supports all of the parsing utilities that `.parse()` does.

        Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:

        ```py
        async with client.beta.chat.completions.stream(
            model="gpt-4o-2024-08-06",
            messages=[...],
        ) as stream:
            async for event in stream:
                if event.type == "content.delta":
                    print(event.delta, flush=True, end="")
        ```

        When the context manager is entered, an `AsyncChatCompletionStream` instance is returned which, like `.create(stream=True)` is an async iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events).

        When the context manager exits, the response will be closed, however the `stream` instance is still available outside
        the context manager.
        rp   r   rX   rZ   r~   Tr=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rS   rT   rU   rV   rW   r   Nr4   )r   r   r   r   r   r   r#   r   r4   r4   r5   r~     s   9	
 zAsyncCompletions.stream)r.   r   )r.   r   r   )<rX   rY   rZ   r[   r=   r   r>   r]   r?   r^   r@   r_   rA   r`   rB   ra   rC   rb   rD   rb   rE   rc   rF   rb   rG   rd   rH   r]   rI   rb   rJ   re   rK   rf   rL   ra   rM   rg   rN   r]   rO   rh   rP   ri   rQ   rb   rR   r]   rS   rj   rT   rk   rU   rl   rV   rm   rW   rn   r.   r   r   r4   r4   r4   r5   r,   *  r   c                   @     e Zd ZdddZdS )	r/   r   r+   r.   Nonec                 C     || _ t|j| _d S N)_completionsr   to_raw_response_wrapperr   r3   r   r4   r4   r5   __init__/     
z#CompletionsWithRawResponse.__init__Nr   r+   r.   r   r   r   r   r   r4   r4   r4   r5   r/   .      r/   c                   @  r   )	r   r   r,   r.   r   c                 C  r   r   )r   r   async_to_raw_response_wrapperr   r   r4   r4   r5   r   8  r   z(AsyncCompletionsWithRawResponse.__init__Nr   r,   r.   r   r   r4   r4   r4   r5   r   7  r   r   c                   @  r   )	r8   r   r+   r.   r   c                 C     || _ t|j| _d S r   )r   r   r   r   r4   r4   r5   r   A     
z)CompletionsWithStreamingResponse.__init__Nr   r   r4   r4   r4   r5   r8   @  r   r8   c                   @  r   )	r   r   r,   r.   r   c                 C  r   r   )r   r   r   r   r4   r4   r5   r   J  r   z.AsyncCompletionsWithStreamingResponse.__init__Nr   r   r4   r4   r4   r5   r   I  r   r   )J
__future__r   typingr   r   r   r   r   r   r	   	functoolsr
   typing_extensionsr   httpx r   _typesr   r   r   r   r   _utilsr   r   _compatr   	_resourcer   r   	_responser   r   
_streamingr   
types.chatr   _base_clientr   lib._parsingr   r   r   r   rx   r    r   types.chat_modelr!   lib.streaming.chatr"   r#   types.chat.chat_completionr$    types.chat.chat_completion_chunkr%   !types.chat.parsed_chat_completionr&   %types.chat.chat_completion_tool_paramr'   (types.chat.chat_completion_message_paramr(   /types.chat.chat_completion_stream_options_paramr)   3types.chat.chat_completion_tool_choice_option_paramr*   __all__r+   r,   r/   r   r8   r   r4   r4   r4   r5   <module>   sF   $    			