o
    `^h4:                     @   s   d dl Z d dlZd dlZd dlZd dlmZ ddlmZ d dl	m
  mZ d dlmZ ddlmZ dgZdd	 ZG d
d dZdd ZejfddZdejdddZdS )    N)prod   )_bspl)	csr_array)_not_a_knot	NdBSplinec                 C   s   t | t jr
t jS t jS )z>Return np.complex128 for complex dtypes, np.float64 otherwise.)np
issubdtypecomplexfloating
complex128float64dtype r   Z/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/scipy/interpolate/_ndbspline.py
_get_dtype   s   r   c                   @   sT   e Zd ZdZddddZedd Zedd	 Zddd
ddZe	dddZ
dS )r   a  Tensor product spline object.

    The value at point ``xp = (x1, x2, ..., xN)`` is evaluated as a linear
    combination of products of one-dimensional b-splines in each of the ``N``
    dimensions::

       c[i1, i2, ..., iN] * B(x1; i1, t1) * B(x2; i2, t2) * ... * B(xN; iN, tN)


    Here ``B(x; i, t)`` is the ``i``-th b-spline defined by the knot vector
    ``t`` evaluated at ``x``.

    Parameters
    ----------
    t : tuple of 1D ndarrays
        knot vectors in directions 1, 2, ... N,
        ``len(t[i]) == n[i] + k + 1``
    c : ndarray, shape (n1, n2, ..., nN, ...)
        b-spline coefficients
    k : int or length-d tuple of integers
        spline degrees.
        A single integer is interpreted as having this degree for
        all dimensions.
    extrapolate : bool, optional
        Whether to extrapolate out-of-bounds inputs, or return `nan`.
        Default is to extrapolate.

    Attributes
    ----------
    t : tuple of ndarrays
        Knots vectors.
    c : ndarray
        Coefficients of the tensor-product spline.
    k : tuple of integers
        Degrees for each dimension.
    extrapolate : bool, optional
        Whether to extrapolate or return nans for out-of-bounds inputs.
        Defaults to true.

    Methods
    -------
    __call__
    design_matrix

    See Also
    --------
    BSpline : a one-dimensional B-spline object
    NdPPoly : an N-dimensional piecewise tensor product polynomial

    N)extrapolatec                C   s   t ||\| _| _\| _| _|d u rd}t|| _t|| _	| jj
d }| j	j|k r3td| dt|D ]7}| j| }| j| }|j
d | d }	| j	j
| |	krntd| d| j	j
|  dt| d	|	 d
| dq7t| j	j}
tj| j	|
d| _	d S )NTr   zCoefficients must be at least z-dimensional.r   z,Knots, coefficients and degree in dimension z are inconsistent: got z coefficients for z knots, need at least z for k=.r   )_preprocess_inputs_k_indices_k1d_t_len_tboolr   r   asarraycshapendim
ValueErrorrangetklenr   r   ascontiguousarray)selfr    r   r!   r   r   dtdkdndtr   r   r   __init__M   s6   




zNdBSpline.__init__c                 C   s
   t | jS N)tupler   r$   r   r   r   r!   i   s   
zNdBSpline.kc                    s"   t  fddt jjd D S )Nc                 3   s(    | ]} j |d  j| f V  qd S r+   )r   r   .0r%   r-   r   r   	<genexpr>p   s   & zNdBSpline.t.<locals>.<genexpr>r   )r,   r   r   r   r-   r   r-   r   r    m   s   "zNdBSpline.t)nur   c                   s  | j jd }|du r| j}t|}|du rtj|ftjd}n/tj|tjd}|jdks3|jd |krAt	d|dt
| j dt|dk rNt	d|tj|td}|j}|d	|d	 }t|}|d	 |krut	d
| d| | jjjdk}| j}|r| jj|kr| jd }|t}||jd| d    }tj fdd jD tjd}	 jd	 }
tj|jdd	 |
f  jd}t|| j | j| j||||
|	| j| || jj}||dd	 | jj|d  S )a@  Evaluate the tensor product b-spline at ``xi``.

        Parameters
        ----------
        xi : array_like, shape(..., ndim)
            The coordinates to evaluate the interpolator at.
            This can be a list or tuple of ndim-dimensional points
            or an array with the shape (num_points, ndim).
        nu : array_like, optional, shape (ndim,)
            Orders of derivatives to evaluate. Each must be non-negative.
            Defaults to the zeroth derivivative.
        extrapolate : bool, optional
            Whether to exrapolate based on first and last intervals in each
            dimension, or return `nan`. Default is to ``self.extrapolate``.

        Returns
        -------
        values : ndarray, shape ``xi.shape[:-1] + self.c.shape[ndim:]``
            Interpolated values at ``xi``
        r   Nr   r   z)invalid number of derivative orders nu = z for ndim = r   z'derivatives must be positive, got nu = zShapes: xi.shape=z
 and ndim=r   ).N)r2   c                    s   g | ]}| j j qS r   )r   itemsize)r/   sc1r   r   
<listcomp>   s    z&NdBSpline.__call__.<locals>.<listcomp>)r   r   r   r   r   zerosintcr   r   r   r"   r    anyfloatreshaper#   r   r   kindviewravelstridesintpemptyr   evaluate_ndbspliner   r   r   )r$   xir1   r   r   xi_shapewas_complexccc1r_strides_c1num_c_troutr   r5   r   __call__r   sb   



 "zNdBSpline.__call__Tc                    s   t j|td}|jd }t||krtdt| d|dt |\ }\}t fddt|D }|dd	 d
 }	t j	|	d	d	d t j
dd	d	d  }
t|| ||
\}}}t|||fS )a  Construct the design matrix as a CSR format sparse array.

        Parameters
        ----------
        xvals :  ndarray, shape(npts, ndim)
            Data points. ``xvals[j, :]`` gives the ``j``-th data point as an
            ``ndim``-dimensional array.
        t : tuple of 1D ndarrays, length-ndim
            Knot vectors in directions 1, 2, ... ndim,
        k : int
            B-spline degree.
        extrapolate : bool, optional
            Whether to extrapolate out-of-bounds values of raise a `ValueError`

        Returns
        -------
        design_matrix : a CSR array
            Each row of the design matrix corresponds to a value in `xvals` and
            contains values of b-spline basis elements which are non-zero
            at this value.

        r   r2   z*Data and knots are inconsistent: len(t) = z for  ndim = r   c                 3   s$    | ]}|  |  d  V  qdS r   Nr   r.   r!   len_tr   r   r0      s   " z*NdBSpline.design_matrix.<locals>.<genexpr>r   N)r   )r   r   r;   r   r"   r   r   r,   r   cumprodrA   copyr   
_colloc_ndr   )clsxvalsr    r!   r   r   r   r   c_shapecscstridesdataindicesindptrr   rN   r   design_matrix   s(   
(
zNdBSpline.design_matrix)T)__name__
__module____qualname____doc__r*   propertyr!   r    rL   classmethodr[   r   r   r   r   r      s    2

Qc              	   C   s^  t |tstd| dt|}zt|  W n ty%   | f| } Y nw tjdd | D tjd} t| |krHtdt| dt| dt|}t|D ]~}t|| }| | }|j	d	 | d
 }|d	k rrtd| d|j
d
krtd| d||d
 k rtdd| d  d| d| dt|d	k  rtd| dtt|||d
  dk rtd| dt| std| dqPtdd | D }ttt||}tj|tjdj }	t|}dd |D }
tj|t|
ftd}|tj t|D ]}|| ||dt|| f< qtj|
tjd}
| |	||
ffS )zHelpers: validate and preprocess NdBSpline inputs.

       Parameters
       ----------
       k : int or tuple
          Spline orders
       t_tpl : tuple or array-likes
          Knots.
    z-Expect `t` to be a tuple of array-likes. Got z	 instead.c                 S   s   g | ]}t |qS r   )operatorindex)r/   kir   r   r   r7     s    z&_preprocess_inputs.<locals>.<listcomp>r   z	len(t) = z != len(k) = r   r   r   zSpline degree in dimension z cannot be negative.zKnot vector in dimension z must be one-dimensional.zNeed at least    z knots for degree z in dimension zKnots in dimension z# must be in a non-decreasing order.z.Need at least two internal knots in dimension z should not have nans or infs.c                 s   s    | ]}|d  V  qdS rM   r   )r/   r'   r   r   r   r0   2      z%_preprocess_inputs.<locals>.<genexpr>c                 S   s   g | ]}t |qS r   r"   )r/   tir   r   r   r7   <  s    N)
isinstancer,   r   r"   	TypeErrorr   r   int32r   r   r   diffr:   uniqueisfiniteallunravel_indexaranger   rA   TrQ   rB   maxr;   fillnan)r!   t_tplr   r%   r&   r'   r(   r   rY   r   rO   r   r   r   r   r      s`   




 r   c           	   	   K   s  t |jt jr$t| |j|fi |}t| |j|fi |}|d|  S |jdkrj|jd dkrjt 	|}t
|jd D ]+}|| |d d |f fi |\|d d |f< }|dkrgtd|d|d| dq<|S || |fi |\}}|dkrtd|d	|d|S )
Ny              ?re   r   r   z	solver = z returns info =z for column r   z returns info = )r   r	   r   r
   _iter_solverealimagr   r   
empty_liker   r   )	absolversolver_argsrx   ry   resjinfor   r   r   rw   F  s    
.rw      r}   c                   sr  t }tdd D }zt   W n ty!    f|  Y nw tD ](\}}t t|}	|	 | krNtd|	 d| d |  d | d  d	q&t fd	dt|D }
tjd
d t	j
 D td}t||
 }|j}t|d| t||d f}||}|tjkrtjt|d}d|vrd|d< |||fi |}||||d  }t|
| S )a  Construct an interpolating NdBspline.

    Parameters
    ----------
    points : tuple of ndarrays of float, with shapes (m1,), ... (mN,)
        The points defining the regular grid in N dimensions. The points in
        each dimension (i.e. every element of the `points` tuple) must be
        strictly ascending or descending.      
    values : ndarray of float, shape (m1, ..., mN, ...)
        The data on the regular grid in n dimensions.
    k : int, optional
        The spline degree. Must be odd. Default is cubic, k=3
    solver : a `scipy.sparse.linalg` solver (iterative or direct), optional.
        An iterative solver from `scipy.sparse.linalg` or a direct one,
        `sparse.sparse.linalg.spsolve`.
        Used to solve the sparse linear system
        ``design_matrix @ coefficients = rhs`` for the coefficients.
        Default is `scipy.sparse.linalg.gcrotmk`
    solver_args : dict, optional
        Additional arguments for the solver. The call signature is
        ``solver(csr_array, rhs_vector, **solver_args)``

    Returns
    -------
    spl : NdBSpline object

    Notes
    -----
    Boundary conditions are not-a-knot in all dimensions.
    c                 s   s    | ]}t |V  qd S r+   rg   )r/   xr   r   r   r0   ~  rf   zmake_ndbspl.<locals>.<genexpr>z
There are z points in dimension z, but order z requires at least  r   z points per dimension.c                 3   s,    | ]}t tj| td  | V  qdS )r   N)r   r   r   r;   r.   r!   pointsr   r   r0     s    $c                 S   s   g | ]}|qS r   r   )r/   xvr   r   r   r7     s    zmake_ndbspl.<locals>.<listcomp>r   Nr   atolgư>)r"   r,   rj   	enumerater   
atleast_1dr   r   r   	itertoolsproductr;   r   r[   r   r   r<   sslspsolve	functoolspartialrw   )r   valuesr!   r}   r~   r   rE   r%   pointnumptsr    rT   matrv_shape
vals_shapevalscoefr   r   r   make_ndbspl^  s>   

 

r   )r   )r   r   rb   numpyr   mathr    r   scipy.sparse.linalgsparselinalgr   scipy.sparser   	_bsplinesr   __all__r   r   r   gcrotmkrw   r   r   r   r   r   <module>   s      aL