o
    `^h=                     @   s6  d Z ddlZddlZddlmZ ddlmZmZ ddl	m
Z
mZ ddgZed	d
 dd
 ddd
 ddd			d+dejjdejjdB dedB dedejejB f
ddZd,ddZedd
 ddd
 edddddddejjdedB dedB dededejejB fd dZd!d" Zd#d$ Zd%d& Zd'd( Zd)d* ZdS )-z5
Created on Fri Apr  2 09:06:05 2021

@author: matth
    N)special   )_axis_nan_policy_factory_broadcast_arrays)array_namespacexp_moveaxis_to_endentropydifferential_entropyc                 C      | S N xr   r   R/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/scipy/stats/_entropy.py<lambda>       r   c                 C   s   d| v r| d d urdS dS )Nqk   r   r   )kwgsr   r   r   r      s   c                 C      | fS r   r   r   r   r   r   r          T)	n_samples	n_outputsresult_to_tuplepaired	too_smallpkr   baseaxisreturnc                 C   s  |dur|dkrt d|du rt| nt| |}|| } tjdd d|  |j| |dd } W d   n1 s;w   Y  |du rJt| }n)||}t| |fd|d	\} }t	|dd}d| |j|fi | }t
| |}|j||d
}|dur|t| }|S )a  
    Calculate the Shannon entropy/relative entropy of given distribution(s).

    If only probabilities `pk` are given, the Shannon entropy is calculated as
    ``H = -sum(pk * log(pk))``.

    If `qk` is not None, then compute the relative entropy
    ``D = sum(pk * log(pk / qk))``. This quantity is also known
    as the Kullback-Leibler divergence.

    This routine will normalize `pk` and `qk` if they don't sum to 1.

    Parameters
    ----------
    pk : array_like
        Defines the (discrete) distribution. Along each axis-slice of ``pk``,
        element ``i`` is the  (possibly unnormalized) probability of event
        ``i``.
    qk : array_like, optional
        Sequence against which the relative entropy is computed. Should be in
        the same format as `pk`.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).
    axis : int, optional
        The axis along which the entropy is calculated. Default is 0.

    Returns
    -------
    S : {float, array_like}
        The calculated entropy.

    Notes
    -----
    Informally, the Shannon entropy quantifies the expected uncertainty
    inherent in the possible outcomes of a discrete random variable.
    For example,
    if messages consisting of sequences of symbols from a set are to be
    encoded and transmitted over a noiseless channel, then the Shannon entropy
    ``H(pk)`` gives a tight lower bound for the average number of units of
    information needed per symbol if the symbols occur with frequencies
    governed by the discrete distribution `pk` [1]_. The choice of base
    determines the choice of units; e.g., ``e`` for nats, ``2`` for bits, etc.

    The relative entropy, ``D(pk|qk)``, quantifies the increase in the average
    number of units of information needed per symbol if the encoding is
    optimized for the probability distribution `qk` instead of the true
    distribution `pk`. Informally, the relative entropy quantifies the expected
    excess in surprise experienced if one believes the true distribution is
    `qk` when it is actually `pk`.

    A related quantity, the cross entropy ``CE(pk, qk)``, satisfies the
    equation ``CE(pk, qk) = H(pk) + D(pk|qk)`` and can also be calculated with
    the formula ``CE = -sum(pk * log(qk))``. It gives the average
    number of units of information needed per symbol if an encoding is
    optimized for the probability distribution `qk` when the true distribution
    is `pk`. It is not computed directly by `entropy`, but it can be computed
    using two calls to the function (see Examples).

    See [2]_ for more information.

    References
    ----------
    .. [1] Shannon, C.E. (1948), A Mathematical Theory of Communication.
           Bell System Technical Journal, 27: 379-423.
           https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    .. [2] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information
           Theory (Wiley Series in Telecommunications and Signal Processing).
           Wiley-Interscience, USA.


    Examples
    --------
    The outcome of a fair coin is the most uncertain:

    >>> import numpy as np
    >>> from scipy.stats import entropy
    >>> base = 2  # work in units of bits
    >>> pk = np.array([1/2, 1/2])  # fair coin
    >>> H = entropy(pk, base=base)
    >>> H
    1.0
    >>> H == -np.sum(pk * np.log(pk)) / np.log(base)
    True

    The outcome of a biased coin is less uncertain:

    >>> qk = np.array([9/10, 1/10])  # biased coin
    >>> entropy(qk, base=base)
    0.46899559358928117

    The relative entropy between the fair coin and biased coin is calculated
    as:

    >>> D = entropy(pk, qk, base=base)
    >>> D
    0.7369655941662062
    >>> np.isclose(D, np.sum(pk * np.log(pk/qk)) / np.log(base), rtol=4e-16, atol=0)
    True

    The cross entropy can be calculated as the sum of the entropy and
    relative entropy`:

    >>> CE = entropy(pk, base=base) + entropy(pk, qk, base=base)
    >>> CE
    1.736965594166206
    >>> CE == -np.sum(pk * np.log(qk)) / np.log(base)
    True

    Nr   +`base` must be a positive number or `None`.ignore)invalid      ?Tr   keepdims)r   xpr   )
ValueErrorr   asarraynperrstatesumr   entrr   dictrel_entrmathlog)r   r   r   r   r'   vec
sum_kwargsSr   r   r   r      s$   {

c                 C   sR   | d }|j | }|dtt|d }dd|   kr$|k s'dS  dS dS )Nr   window_length      ?r   TF)shapegetr1   floorsqrt)sampleskwargsr   valuesnr6   r   r   r   "_differential_entropy_is_too_small   s   
r@   c                 C   r
   r   r   r   r   r   r   r      r   c                 C   r   r   r   r   r   r   r   r      r   )r   r   r   auto)r6   r   r   methodr>   r6   rB   c                C   sR  t | }|| } || jdr|| |dj} t| ||d} | jd }|du r4tt	|d }dd|   kr@|k sLn t
d| d	| d
|durX|dkrXt
d|j| dd}tttttd}| }||vrzdt| }	t
|	|dkr|dkrd}n	|dkrd}nd}|| |||d}
|dur|
t| }
||
| jS )aV  Given a sample of a distribution, estimate the differential entropy.

    Several estimation methods are available using the `method` parameter. By
    default, a method is selected based the size of the sample.

    Parameters
    ----------
    values : sequence
        Sample from a continuous distribution.
    window_length : int, optional
        Window length for computing Vasicek estimate. Must be an integer
        between 1 and half of the sample size. If ``None`` (the default), it
        uses the heuristic value

        .. math::
            \left \lfloor \sqrt{n} + 0.5 \right \rfloor

        where :math:`n` is the sample size. This heuristic was originally
        proposed in [2]_ and has become common in the literature.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).
    axis : int, optional
        The axis along which the differential entropy is calculated.
        Default is 0.
    method : {'vasicek', 'van es', 'ebrahimi', 'correa', 'auto'}, optional
        The method used to estimate the differential entropy from the sample.
        Default is ``'auto'``.  See Notes for more information.

    Returns
    -------
    entropy : float
        The calculated differential entropy.

    Notes
    -----
    This function will converge to the true differential entropy in the limit

    .. math::
        n \to \infty, \quad m \to \infty, \quad \frac{m}{n} \to 0

    The optimal choice of ``window_length`` for a given sample size depends on
    the (unknown) distribution. Typically, the smoother the density of the
    distribution, the larger the optimal value of ``window_length`` [1]_.

    The following options are available for the `method` parameter.

    * ``'vasicek'`` uses the estimator presented in [1]_. This is
      one of the first and most influential estimators of differential entropy.
    * ``'van es'`` uses the bias-corrected estimator presented in [3]_, which
      is not only consistent but, under some conditions, asymptotically normal.
    * ``'ebrahimi'`` uses an estimator presented in [4]_, which was shown
      in simulation to have smaller bias and mean squared error than
      the Vasicek estimator.
    * ``'correa'`` uses the estimator presented in [5]_ based on local linear
      regression. In a simulation study, it had consistently smaller mean
      square error than the Vasiceck estimator, but it is more expensive to
      compute.
    * ``'auto'`` selects the method automatically (default). Currently,
      this selects ``'van es'`` for very small samples (<10), ``'ebrahimi'``
      for moderate sample sizes (11-1000), and ``'vasicek'`` for larger
      samples, but this behavior is subject to change in future versions.

    All estimators are implemented as described in [6]_.

    References
    ----------
    .. [1] Vasicek, O. (1976). A test for normality based on sample entropy.
           Journal of the Royal Statistical Society:
           Series B (Methodological), 38(1), 54-59.
    .. [2] Crzcgorzewski, P., & Wirczorkowski, R. (1999). Entropy-based
           goodness-of-fit test for exponentiality. Communications in
           Statistics-Theory and Methods, 28(5), 1183-1202.
    .. [3] Van Es, B. (1992). Estimating functionals related to a density by a
           class of statistics based on spacings. Scandinavian Journal of
           Statistics, 61-72.
    .. [4] Ebrahimi, N., Pflughoeft, K., & Soofi, E. S. (1994). Two measures
           of sample entropy. Statistics & Probability Letters, 20(3), 225-234.
    .. [5] Correa, J. C. (1995). A new estimator of entropy. Communications
           in Statistics-Theory and Methods, 24(10), 2439-2449.
    .. [6] Noughabi, H. A. (2015). Entropy Estimation Using Numerical Methods.
           Annals of Data Science, 2(2), 231-241.
           https://link.springer.com/article/10.1007/s40745-015-0045-9

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.stats import differential_entropy, norm

    Entropy of a standard normal distribution:

    >>> rng = np.random.default_rng()
    >>> values = rng.standard_normal(100)
    >>> differential_entropy(values)
    1.3407817436640392

    Compare with the true entropy:

    >>> float(norm.entropy())
    1.4189385332046727

    For several sample sizes between 5 and 1000, compare the accuracy of
    the ``'vasicek'``, ``'van es'``, and ``'ebrahimi'`` methods. Specifically,
    compare the root mean squared error (over 1000 trials) between the estimate
    and the true differential entropy of the distribution.

    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>>
    >>>
    >>> def rmse(res, expected):
    ...     '''Root mean squared error'''
    ...     return np.sqrt(np.mean((res - expected)**2))
    >>>
    >>>
    >>> a, b = np.log10(5), np.log10(1000)
    >>> ns = np.round(np.logspace(a, b, 10)).astype(int)
    >>> reps = 1000  # number of repetitions for each sample size
    >>> expected = stats.expon.entropy()
    >>>
    >>> method_errors = {'vasicek': [], 'van es': [], 'ebrahimi': []}
    >>> for method in method_errors:
    ...     for n in ns:
    ...        rvs = stats.expon.rvs(size=(reps, n), random_state=rng)
    ...        res = stats.differential_entropy(rvs, method=method, axis=-1)
    ...        error = rmse(res, expected)
    ...        method_errors[method].append(error)
    >>>
    >>> for method, errors in method_errors.items():
    ...     plt.loglog(ns, errors, label=method)
    >>>
    >>> plt.legend()
    >>> plt.xlabel('sample size')
    >>> plt.ylabel('RMSE (1000 trials)')
    >>> plt.title('Entropy Estimator Error (Exponential Distribution)')

    integralr$   r'   r   Nr7   r   zWindow length (z7) must be positive and less than half the sample size (z).r   r!   r(   )vasicekvan escorreaebrahimirA   z`method` must be one of rA   
   rF   i  rH   rE   )r   r*   isdtypedtypeastyper   r8   r1   r:   r;   r)   sort_vasicek_entropy_van_es_entropy_correa_entropy_ebrahimi_entropylowersetr2   )r>   r6   r   r   rB   r'   r?   sorted_datamethodsmessageresr   r   r   r	      sL    

c                C   sX   | j dd |f }|| dddf |}|| dddf |}|j|| |fddS )z9Pad the data for computing the rolling window difference.Nr   .r   r(   )r8   broadcast_toconcat)Xmr'   r8   XlXrr   r   r   _pad_along_last_axisp  s   r^   c                C   sd   | j d }t| ||d} | dd| df | ddd| f  }||d|  | }|j|ddS )z:Compute the Vasicek estimator as described in [6] Eq. 1.3.r   rD   .r   Nr(   )r8   r^   r2   mean)rZ   r[   r'   r?   differenceslogsr   r   r   rN   y  s
   
(rN   c                C   s   | j d }| d|df | dd| f  }d||  |j||d | | dd }|j||d |jd}||d|  t| t|d  S )z1Compute the van Es estimator as described in [6].r   .Nr   r(   rK   )r8   r-   r2   arangerK   r1   )rZ   r[   r'   r?   
differenceterm1kr   r   r   rO     s
   
",*rO   c                C   s   | j d }t| ||d} | dd| df | ddd| f  }|jd|d | jd}||d }d|||k d |  |||k< d||||| d k  |  |||| d k< ||| ||  }|j|dd	S )
z3Compute the Ebrahimi estimator as described in [6].r   rD   .r   Nr_   r   rc   r(   )r8   r^   rd   rK   	ones_liker2   r`   )rZ   r[   r'   r?   ra   icirb   r   r   r   rQ     s   
( 0rQ   c                C   s   | j d }t| ||d} |d|d }|| |d dddf }|| }|| d }|j| d|f ddd}| d|f | }	|j|	| dd	}
||j|	d
 dd	 }|j||
| dd	 S )z1Compute the Correa estimator as described in [6].r   rD   r   N.r_   Tr%   r(   r   )r8   r^   rd   r`   r-   r2   )rZ   r[   r'   r?   ri   djjj0Xibarre   numdenr   r   r   rP     s   
rP   )NNr   )r   )__doc__r1   numpyr+   scipyr   _axis_nan_policyr   r   scipy._lib._array_apir   r   __all__typing	ArrayLikefloatintnumberndarrayr   r@   strr	   r^   rN   rO   rQ   rP   r   r   r   r   <module>   sl    



 
	

 B		