o
    `^h$                     @   s   d Z ddlZddlmZmZ ddlmZ ddlZddl	m
Z
mZ ddlmZ ddlmZmZmZ dd	lmZ dd
lmZ ddlmZmZmZmZ G dd deedZdddZdS )zGeneric feature selection mixin    N)ABCMetaabstractmethod)
attrgetter)
csc_matrixissparse   )TransformerMixin)_safe_indexingcheck_arraysafe_sqr)_get_output_config)get_tags)_check_feature_names_in_is_pandas_dfcheck_is_fittedvalidate_datac                   @   sH   e Zd ZdZdddZedd Zdd Zd	d
 Zdd Z	dddZ
dS )SelectorMixina  
    Transformer mixin that performs feature selection given a support mask

    This mixin provides a feature selector implementation with `transform` and
    `inverse_transform` functionality given an implementation of
    `_get_support_mask`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.base import BaseEstimator
    >>> from sklearn.feature_selection import SelectorMixin
    >>> class FeatureSelector(SelectorMixin, BaseEstimator):
    ...    def fit(self, X, y=None):
    ...        self.n_features_in_ = X.shape[1]
    ...        return self
    ...    def _get_support_mask(self):
    ...        mask = np.zeros(self.n_features_in_, dtype=bool)
    ...        mask[:2] = True  # select the first two features
    ...        return mask
    >>> X, y = load_iris(return_X_y=True)
    >>> FeatureSelector().fit_transform(X, y).shape
    (150, 2)
    Fc                 C   s   |   }|s|S t|d S )a  
        Get a mask, or integer index, of the features selected.

        Parameters
        ----------
        indices : bool, default=False
            If True, the return value will be an array of integers, rather
            than a boolean mask.

        Returns
        -------
        support : array
            An index that selects the retained features from a feature vector.
            If `indices` is False, this is a boolean array of shape
            [# input features], in which an element is True iff its
            corresponding feature is selected for retention. If `indices` is
            True, this is an integer array of shape [# output features] whose
            values are indices into the input feature vector.
        r   )_get_support_masknpwhere)selfindicesmask r   ]/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/sklearn/feature_selection/_base.pyget_support4   s   zSelectorMixin.get_supportc                 C   s   dS )a  
        Get the boolean mask indicating which features are selected

        Returns
        -------
        support : boolean array of shape [# input features]
            An element is True iff its corresponding feature is selected for
            retention.
        Nr   )r   r   r   r   r   K   s    zSelectorMixin._get_support_maskc              	   C   sJ   t d| dd }|dkot|}t| |ddt| jj |dd}| |S )	aB  Reduce X to the selected features.

        Parameters
        ----------
        X : array of shape [n_samples, n_features]
            The input samples.

        Returns
        -------
        X_r : array of shape [n_samples, n_selected_features]
            The input samples with only the selected features.
        	transform)	estimatordensedefaultNcsrF)dtypeaccept_sparseensure_all_finiteskip_check_arrayreset)r   r   r   r   
input_tags	allow_nan
_transform)r   Xoutput_config_dense
preserve_Xr   r   r   r   W   s   
	zSelectorMixin.transformc                 C   sj   |   }| s.tdt t|dr|jddddf S tjd|j	d
|jd dfS t||ddS )z"Reduce X to the selected features.zYNo features were selected: either the data is too noisy or the selection test too strict.ilocNr   r!      axis)r   anywarningswarnUserWarninghasattrr,   r   emptyr!   reshapeshaper	   )r   r)   r   r   r   r   r(   v   s   
 zSelectorMixin._transformc                 C   s   t |r<| }| t|jdd}| }tdgt	|g}t
|j|j|f|jd t|d f|jd}|S |  }t|dd}| |jd krStd|jdkr`|dddf }tj|jd |jf|jd}||dd|f< |S )a  Reverse the transformation operation.

        Parameters
        ----------
        X : array of shape [n_samples, n_selected_features]
            The input samples.

        Returns
        -------
        X_r : array of shape [n_samples, n_original_features]
            `X` with columns of zeros inserted where features would have
            been removed by :meth:`transform`.
        r.   r   )r8   r!   Nr-   z,X has a different shape than during fitting.)r   tocscinverse_transformr   diffindptrr7   ravelconcatenatecumsumr   datar   r8   lenr!   r   r
   sum
ValueErrorndimzerossize)r   r)   itcol_nonzerosr=   Xtsupportr   r   r   r;      s(   
zSelectorMixin.inverse_transformNc                 C   s   t |  t| |}||   S )a  Mask feature names according to selected features.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then the following input feature names are generated:
              `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        )r   r   r   )r   input_featuresr   r   r   get_feature_names_out   s   
z#SelectorMixin.get_feature_names_out)F)N)__name__
__module____qualname____doc__r   r   r   r   r(   r;   rM   r   r   r   r   r      s    

(r   )	metaclassr.   c                 C   s   t |tr,|dkr't| drtd}n!t| drtd}ntd| jj dt|}nt|s4td|| }|du r>|S |dkrY|jd	krNt	
|}|S t	jj|d
|d}|S |dkrr|jd	krht|}|S t|jd
d}|S td)a  
    Retrieve and aggregate (ndim > 1)  the feature importances
    from an estimator. Also optionally applies transformation.

    Parameters
    ----------
    estimator : estimator
        A scikit-learn estimator from which we want to get the feature
        importances.

    getter : "auto", str or callable
        An attribute or a callable to get the feature importance. If `"auto"`,
        `estimator` is expected to expose `coef_` or `feature_importances`.

    transform_func : {"norm", "square"}, default=None
        The transform to apply to the feature importances. By default (`None`)
        no transformation is applied.

    norm_order : int, default=1
        The norm order to apply when `transform_func="norm"`. Only applied
        when `importances.ndim > 1`.

    Returns
    -------
    importances : ndarray of shape (n_features,)
        The features importances, optionally transformed.
    autocoef_feature_importances_z;when `importance_getter=='auto'`, the underlying estimator z should have `coef_` or `feature_importances_` attribute. Either pass a fitted estimator to feature selector or call fit before calling transform.z4`importance_getter` has to be a string or `callable`Nnormr.   r   )r0   ordsquarer/   zpValid values for `transform_func` are None, 'norm' and 'square'. Those two transformation are only supported now)
isinstancestrr5   r   rD   	__class__rN   callablerE   r   abslinalgrV   r   rC   )r   gettertransform_func
norm_orderimportancesr   r   r   _get_feature_importances   s@   









rc   )Nr.   )rQ   r2   abcr   r   operatorr   numpyr   scipy.sparser   r   baser   utilsr	   r
   r   utils._set_outputr   utils._tagsr   utils.validationr   r   r   r   r   rc   r   r   r   r   <module>   s     /