o
    `^h:                     @   s   d dl Zd dlmZ ddlmZmZ ddlmZm	Z	 dgZ
dd Zd	d
 Zdd ZeegegeedhgdddddddZdS )    N)linear_sum_assignment   )
StrOptionsvalidate_params)check_arraycheck_consistent_lengthconsensus_scorec                 C   s@   t |   t |  dd }t|| \}}t||\}}||||fS )z9Unpacks the row and column arrays and checks their shape.c                 S   s   t | ddS )NF)	ensure_2d)r   )x r   `/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/sklearn/metrics/cluster/_bicluster.py<lambda>   s    z)_check_rows_and_columns.<locals>.<lambda>)r   map)abchecksa_rowsa_colsb_rowsb_colsr   r   r   _check_rows_and_columns   s   r   c                 C   sH   | |   ||    }|   |   }|  |   }||| |  S )z:Jaccard coefficient on the elements of the two biclusters.)sum)r   r   r   r   intersectiona_sizeb_sizer   r   r   _jaccard   s   r   c                    sP   t | |\ jd }jd t fddt|D }|S )zComputes pairwise similarity matrix.

    result[i, j] is the Jaccard coefficient of a's bicluster i and b's
    bicluster j.

    r   c                    s,   g | ]  fd dt D qS )c                    s*   g | ]}   | | qS r   r   ).0j)r   r   r   r   i
similarityr   r   
<listcomp>-   s   * z3_pairwise_similarity.<locals>.<listcomp>.<listcomp>)range)r   r   r   r   r   n_br   )r   r   r    ,   s    z(_pairwise_similarity.<locals>.<listcomp>)r   shapenparrayr!   )r   r   r   n_aresultr   r"   r   _pairwise_similarity!   s   

r)   jaccard)r   r   r   T)prefer_skip_nested_validation)r   c                C   sZ   |dkrt }t| ||}td| \}}t| d }t|d }|||f  t|| S )ad  The similarity of two sets of biclusters.

    Similarity between individual biclusters is computed. Then the best
    matching between sets is found by solving a linear sum assignment problem,
    using a modified Jonker-Volgenant algorithm.
    The final score is the sum of similarities divided by the size of
    the larger set.

    Read more in the :ref:`User Guide <biclustering>`.

    Parameters
    ----------
    a : tuple (rows, columns)
        Tuple of row and column indicators for a set of biclusters.

    b : tuple (rows, columns)
        Another set of biclusters like ``a``.

    similarity : 'jaccard' or callable, default='jaccard'
        May be the string "jaccard" to use the Jaccard coefficient, or
        any function that takes four arguments, each of which is a 1d
        indicator vector: (a_rows, a_columns, b_rows, b_columns).

    Returns
    -------
    consensus_score : float
       Consensus score, a non-negative value, sum of similarities
       divided by size of larger set.

    See Also
    --------
    scipy.optimize.linear_sum_assignment : Solve the linear sum assignment problem.

    References
    ----------
    * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis
      for bicluster acquisition
      <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__.

    Examples
    --------
    >>> from sklearn.metrics import consensus_score
    >>> a = ([[True, False], [False, True]], [[False, True], [True, False]])
    >>> b = ([[False, True], [True, False]], [[True, False], [False, True]])
    >>> consensus_score(a, b, similarity='jaccard')
    np.float64(1.0)
    r*   g      ?r   )r   r)   r   lenr   max)r   r   r   matrixrow_indicescol_indicesr'   r#   r   r   r   r   4   s   8)numpyr%   scipy.optimizer   utils._param_validationr   r   utils.validationr   r   __all__r   r   r)   tuplecallabler   r   r   r   r   <module>   s    

