o
    `^hD5                     @   s   d dl ZddlmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZmZ G dd	 d	ZG d
d dZG dd deeZedg dde_G dd deZdd ZG dd deZdS )    N   )BaseEstimatorClassifierMixin)RequestMethod   )available_if)_check_sample_weight_num_samplescheck_arraycheck_is_fittedcheck_random_statec                   @   s    e Zd ZdZdd Zdd ZdS )ArraySlicingWrapper-
    Parameters
    ----------
    array
    c                 C   
   || _ d S Narrayselfr    r   T/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/sklearn/utils/_mocking.py__init__      
zArraySlicingWrapper.__init__c                 C   s   t | j| S r   MockDataFramer   )r   aslicer   r   r   __getitem__      zArraySlicingWrapper.__getitem__N)__name__
__module____qualname____doc__r   r   r   r   r   r   r      s    r   c                   @   sD   e Zd ZdZdd Zdd ZdddZd	d
 Zdd ZdddZ	dS )r   r   c                 C   s*   || _ || _|j| _|j| _t|| _d S r   )r   valuesshapendimr   ilocr   r   r   r   r   )   s
   zMockDataFrame.__init__c                 C   s
   t | jS r   )lenr   r   r   r   r   __len__1   r   zMockDataFrame.__len__Nc                 C   s   | j S r   r   )r   dtyper   r   r   	__array__4   s   zMockDataFrame.__array__c                 C   s   t | j|jkS r   r   r   otherr   r   r   __eq__:   s   zMockDataFrame.__eq__c                 C   s
   | |k S r   r   r+   r   r   r   __ne__=   r   zMockDataFrame.__ne__r   c                 C   s   t | jj||dS )Naxis)r   r   take)r   indicesr0   r   r   r   r1   @      zMockDataFrame.taker   )r   )
r   r   r    r!   r   r(   r*   r-   r.   r1   r   r   r   r   r       s    
r   c                
       st   e Zd ZdZdddddddddd	ddZdd	d
ZdddZdd Zdd Zdd Z	dddZ
 fddZ  ZS )CheckingClassifiera$	  Dummy classifier to test pipelining and meta-estimators.

    Checks some property of `X` and `y`in fit / predict.
    This allows testing whether pipelines / cross-validation or metaestimators
    changed the input.

    Can also be used to check if `fit_params` are passed correctly, and
    to force a certain score to be returned.

    Parameters
    ----------
    check_y, check_X : callable, default=None
        The callable used to validate `X` and `y`. These callable should return
        a bool where `False` will trigger an `AssertionError`. If `None`, the
        data is not validated. Default is `None`.

    check_y_params, check_X_params : dict, default=None
        The optional parameters to pass to `check_X` and `check_y`. If `None`,
        then no parameters are passed in.

    methods_to_check : "all" or list of str, default="all"
        The methods in which the checks should be applied. By default,
        all checks will be done on all methods (`fit`, `predict`,
        `predict_proba`, `decision_function` and `score`).

    foo_param : int, default=0
        A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1
        otherwise it is 0.

    expected_sample_weight : bool, default=False
        Whether to check if a valid `sample_weight` was passed to `fit`.

    expected_fit_params : list of str, default=None
        A list of the expected parameters given when calling `fit`.

    Attributes
    ----------
    classes_ : int
        The classes seen during `fit`.

    n_features_in_ : int
        The number of features seen during `fit`.

    Examples
    --------
    >>> from sklearn.utils._mocking import CheckingClassifier

    This helper allow to assert to specificities regarding `X` or `y`. In this
    case we expect `check_X` or `check_y` to return a boolean.

    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4))
    >>> clf.fit(X, y)
    CheckingClassifier(...)

    We can also provide a check which might raise an error. In this case, we
    expect `check_X` to return `X` and `check_y` to return `y`.

    >>> from sklearn.utils import check_array
    >>> clf = CheckingClassifier(check_X=check_array)
    >>> clf.fit(X, y)
    CheckingClassifier(...)
    Nallr   	check_ycheck_y_paramscheck_Xcheck_X_paramsmethods_to_check	foo_paramexpected_sample_weightexpected_fit_paramsrandom_statec       	   
      C   s:   || _ || _|| _|| _|| _|| _|| _|| _|	| _d S r   r6   )
r   r7   r8   r9   r:   r;   r<   r=   r>   r?   r   r   r   r      s   
zCheckingClassifier.__init__Tc                 C   s   |rt |  | jdur-| jdu ri n| j}| j|fi |}t|ttjfr+|s*J n|}|dur[| jdur[| jdu r=i n| j}| j|fi |}t|ttjfrY|sUJ ||fS |}||fS )at  Validate X and y and make extra check.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data set.
            `X` is checked only if `check_X` is not `None` (default is None).
        y : array-like of shape (n_samples), default=None
            The corresponding target, by default `None`.
            `y` is checked only if `check_y` is not `None` (default is None).
        should_be_fitted : bool, default=True
            Whether or not the classifier should be already fitted.
            By default True.

        Returns
        -------
        X, y
        N)	r   r9   r:   
isinstanceboolnpbool_r7   r8   )r   Xyshould_be_fittedparams	checked_X	checked_yr   r   r   
_check_X_y   s    

zCheckingClassifier._check_X_yc              	   K   s   t |t |ks
J | jdksd| jv r| j||dd\}}t|d | _tt|ddd| _| j	rlt
| j	t
| }|rItdt| d	| D ]\}}t |t |krktd
| dt | dt | dqM| jr||du rwtdt|| | S )a   Fit classifier.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples, n_outputs) or (n_samples,),                 default=None
            Target relative to X for classification or regression;
            None for unsupervised learning.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of the estimator

        Returns
        -------
        self
        r5   fitF)rF   r   T)	ensure_2dallow_ndzExpected fit parameter(s) z
 not seen.zFit parameter z has length z; expected .Nz#Expected sample_weight to be passed)r	   r;   rJ   rB   r#   n_features_in_uniquer
   classes_r>   setAssertionErrorlistitemsr=   r   )r   rD   rE   sample_weight
fit_paramsmissingkeyvaluer   r   r   rK      s0   
zCheckingClassifier.fitc                 C   s@   | j dks
d| j v r| |\}}t| j}|j| jt|dS )a>  Predict the first class seen in `classes_`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        preds : ndarray of shape (n_samples,)
            Predictions of the first class seens in `classes_`.
        r5   predict)size)r;   rJ   r   r?   choicerQ   r	   r   rD   rE   rngr   r   r   r[      s   
zCheckingClassifier.predictc                 C   st   | j dks
d| j v r| |\}}t| j}|t|t| j}tj	||d}|tj
|ddddtjf  }|S )a  Predict probabilities for each class.

        Here, the dummy classifier will provide a probability of 1 for the
        first class of `classes_` and 0 otherwise.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes)
            The probabilities for each sample and class.
        r5   predict_proba)outr   r/   N)r;   rJ   r   r?   randnr	   r&   rQ   rB   abssumnewaxis)r   rD   rE   r_   probar   r   r   r`     s   
 z CheckingClassifier.predict_probac                 C   s^   | j dks
d| j v r| |\}}t| j}t| jdkr$|t|S |t|t| jS )aB  Confidence score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        decision : ndarray of shape (n_samples,) if n_classes == 2                else (n_samples, n_classes)
            Confidence score.
        r5   decision_functionr   )r;   rJ   r   r?   r&   rQ   rb   r	   r^   r   r   r   rg     s   


z$CheckingClassifier.decision_functionc                 C   s:   | j dks
d| j v r| || | jdkrd}|S d}|S )aQ  Fake score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Y : array-like of shape (n_samples, n_output) or (n_samples,)
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float
            Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
            score=1` otherwise `score=0`).
        r5   scorer   g      ?g        )r;   rJ   r<   )r   rD   Yrh   r   r   r   rh   7  s   
zCheckingClassifier.scorec                    s$   t   }d|_d|j_d|j_|S )NTF)super__sklearn_tags__
_skip_test
input_tagstwo_d_arraytarget_tagsone_d_labelsr   tags	__class__r   r   rk   R  s
   
z#CheckingClassifier.__sklearn_tags__NTr   )NN)r   r   r    r!   r   rJ   rK   r[   r`   rg   rh   rk   __classcell__r   r   rs   r   r4   D   s&    D

%0
r4   rK   F)namekeysvalidate_keysc                       sB   e Zd ZdZdddZdd Zdd Zd	d
 Z fddZ  Z	S )NoSampleWeightWrapperzWrap estimator which will not expose `sample_weight`.

    Parameters
    ----------
    est : estimator, default=None
        The estimator to wrap.
    Nc                 C   r   r   )est)r   r{   r   r   r   r   k  r   zNoSampleWeightWrapper.__init__c                 C   s   | j ||S r   )r{   rK   r   rD   rE   r   r   r   rK   n  r   zNoSampleWeightWrapper.fitc                 C      | j |S r   )r{   r[   r   rD   r   r   r   r[   q     zNoSampleWeightWrapper.predictc                 C   r}   r   )r{   r`   r~   r   r   r   r`   t  r   z#NoSampleWeightWrapper.predict_probac                    s   t   }d|_|S ru   )rj   rk   rl   rq   rs   r   r   rk   w  s   
z&NoSampleWeightWrapper.__sklearn_tags__r   )
r   r   r    r!   r   rK   r[   r`   rk   rv   r   r   rs   r   rz   b  s    
rz   c                    s    fdd}|S )Nc                    s   | j d uo	 | j v S r   response_methodsr'   methodr   r   check~  r3   z_check_response.<locals>.checkr   )r   r   r   r   r   _check_response}  s   r   c                   @   s^   e Zd ZdZdddZdd Zeeddd	 Zeed
dd Z	eeddd Z
dS )_MockEstimatorOnOffPredictiona  Estimator for which we can turn on/off the prediction methods.

    Parameters
    ----------
    response_methods: list of             {"predict", "predict_proba", "decision_function"}, default=None
        List containing the response implemented by the estimator. When, the
        response is in the list, it will return the name of the response method
        when called. Otherwise, an `AttributeError` is raised. It allows to
        use `getattr` as any conventional estimator. By default, no response
        methods are mocked.
    Nc                 C   r   r   r   )r   r   r   r   r   r     r   z&_MockEstimatorOnOffPrediction.__init__c                 C   s   t || _| S r   )rB   rP   rQ   r|   r   r   r   rK     s   z!_MockEstimatorOnOffPrediction.fitr[   c                 C      dS )Nr[   r   r~   r   r   r   r[        z%_MockEstimatorOnOffPrediction.predictr`   c                 C   r   )Nr`   r   r~   r   r   r   r`     r   z+_MockEstimatorOnOffPrediction.predict_probarg   c                 C   r   )Nrg   r   r~   r   r   r   rg     r   z/_MockEstimatorOnOffPrediction.decision_functionr   )r   r   r    r!   r   rK   r   r   r[   r`   rg   r   r   r   r   r     s    





r   )numpyrB   baser   r   utils._metadata_requestsr   metaestimatorsr   
validationr   r	   r
   r   r   r   r   r4   set_fit_requestrz   r   r   r   r   r   r   <module>   s    	$  