o
    `^h@                  	   @   s   d Z ddlZddlmZ ddlmZ ddlmZm	Z	m
Z
 e
dd	ge	eddd
dge	eddd
ddgdddddddZ		dddZdS )zGraph utilities and algorithms.    N)sparse   )pairwise_distances   )IntegralIntervalvalidate_paramsz
array-likezsparse matrixleft)closed)graphsourcecutoffT)prefer_skip_nested_validation)r   c                C   s   t | r
|  } nt | } i }d}|g}|rC|}t }|D ]}||vr1|||< || j|  q|dur=||kr=	 |S |d7 }|s|S )aD  Return the length of the shortest path from source to all reachable nodes.

    Parameters
    ----------
    graph : {array-like, sparse matrix} of shape (n_nodes, n_nodes)
        Adjacency matrix of the graph. Sparse matrix of format LIL is
        preferred.

    source : int
       Start node for path.

    cutoff : int, default=None
        Depth to stop the search - only paths of length <= cutoff are returned.

    Returns
    -------
    paths : dict
        Reachable end nodes mapped to length of path from source,
        i.e. `{end: path_length}`.

    Examples
    --------
    >>> from sklearn.utils.graph import single_source_shortest_path_length
    >>> import numpy as np
    >>> graph = np.array([[ 0, 1, 0, 0],
    ...                   [ 1, 0, 1, 0],
    ...                   [ 0, 1, 0, 0],
    ...                   [ 0, 0, 0, 0]])
    >>> single_source_shortest_path_length(graph, 0)
    {0: 0, 1: 1, 2: 2}
    >>> graph = np.ones((6, 6))
    >>> sorted(single_source_shortest_path_length(graph, 2).items())
    [(0, 1), (1, 1), (2, 0), (3, 1), (4, 1), (5, 1)]
    r   Nr   )r   issparsetolil
lil_matrixsetupdaterows)r   r   r   seenlevel
next_level
this_levelv r   Q/home/air/shanriGPT/back/venv/lib/python3.10/site-packages/sklearn/utils/graph.py"single_source_shortest_path_length   s(   
+


r   distance	euclideanc                 K   s.  |dkrt | rtdt|D ]}t||k}| | }	t|D ]q}
t||
k}| | }|dkr<| t|| }nt|	|fd|i|}t|j	dd|j
\}}|dkrmd||| || f< d||| || f< q"|dkr|||f ||| || f< |||f ||| || f< q"td	| q|S )
a  Add connections to sparse graph to connect unconnected components.

    For each pair of unconnected components, compute all pairwise distances
    from one component to the other, and add a connection on the closest pair
    of samples. This is a hacky way to get a graph with a single connected
    component, which is necessary for example to compute a shortest path
    between all pairs of samples in the graph.

    Parameters
    ----------
    X : array of shape (n_samples, n_features) or (n_samples, n_samples)
        Features to compute the pairwise distances. If `metric =
        "precomputed"`, X is the matrix of pairwise distances.

    graph : sparse matrix of shape (n_samples, n_samples)
        Graph of connection between samples.

    n_connected_components : int
        Number of connected components, as computed by
        `scipy.sparse.csgraph.connected_components`.

    component_labels : array of shape (n_samples)
        Labels of connected components, as computed by
        `scipy.sparse.csgraph.connected_components`.

    mode : {'connectivity', 'distance'}, default='distance'
        Type of graph matrix: 'connectivity' corresponds to the connectivity
        matrix with ones and zeros, and 'distance' corresponds to the distances
        between neighbors according to the given metric.

    metric : str
        Metric used in `sklearn.metrics.pairwise.pairwise_distances`.

    kwargs : kwargs
        Keyword arguments passed to
        `sklearn.metrics.pairwise.pairwise_distances`.

    Returns
    -------
    graph : sparse matrix of shape (n_samples, n_samples)
        Graph of connection between samples, with a single connected component.
    precomputedz_fix_connected_components with metric='precomputed' requires the full distance matrix in X, and does not work with a sparse neighbors graph.metricN)axisconnectivityr   r   z?Unknown mode=%r, should be one of ['connectivity', 'distance'].)r   r   RuntimeErrorrangenpflatnonzeroix_r   unravel_indexargminshape
ValueError)Xr   n_connected_componentscomponent_labelsmoder    kwargsiidx_iXijidx_jXjDiijjr   r   r   _fix_connected_componentsO   s6   3r:   )r   r   )__doc__numpyr%   scipyr   metrics.pairwiser   _param_validationr   r   r   r   r:   r   r   r   r   <module>   s     <